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Abstract

‘Stock market crash’: a magic expression, which
will definitely attract the attention of every
financial investor. This paper is the follow-up of
a paper published in Derivatives Use, Trading
& Regulation whose objective was to present
extreme value theory. This paper now shows
how this statistical theory can be used to obtain
some quantitative results about such extreme
price movements. More precisely, it estimates the
probability of an extreme price movement and its
waiting time period. It also focuses on extreme
price movements associated with stock market
crashes. The opinions expressed in this paper are
those of the author and do not necessarily reflect
the official views of the bank.

market participants would certainly care
about such extraordinary events, no
research work has ever attempted to give a
rigorous quantification of its meaning. In
this paper we use extreme value theory to
provide some quantitative results on
extreme price movements. Using the
asymptotic distribution of extreme returns,
we compute the probability of a stock
market crash and its waiting time period.
This paper is organised as follows: the
first part shows how extreme value theory
can be used to get information about
extreme price movements. Two statistical
tools are used: the probability of
exceedance of an extreme price movement
of a given level and its waiting time period

defined as the average time needed to
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considers qualitative aspects. The conclusion
discusses the usefulness of the results in the

context of fund management.

EXTREME PRICE MOVEMENTS

In this section, we first recall the definition
of extreme price movements in the context
of extreme value theory. We then expose
the main result given by this statistical
theory and the statistical tools used to
quantify extreme price movements. Finally,
we present some empirical results about the
extreme price movements observed in the
US equity market.

Definition of extreme price
movements

Price movements are measured by the
logarithmic returns on the assets or index
on a regular basis (a day or a week, for
example). The basic return observed on the
time-interval [f— 1, 7] is denoted by R,. Let
R,, R,, ... R, be the returns observed over
T intervals [0, 1], [1, 2], [2, 3], ..., [T—2,
T—1], [T—1, T)]. Extreme price
movements can be defined as the maximum
and the minimum of the random variables
R,, R,, ..
minimum denoted by Z; observed over T

. R,. This paper focuses on the

trading intervals: Z; = Min(R,, R,, ...,
Ry).

Results from extreme value theory

Assuming that returns R, are independent
and drawn from the same distribution Fpg,

the exact distribution of the minimal

return, denoted by F,, is given by
Fp(z) = 1= (1 = Fe(2))". (1)

As noted by Longin,' in practice, the
distribution of returns is not precisely
known and, therefore, if this distribution 1is
not known, neither is the exact distribution
of minimal returns. From equation (1), it
can also be concluded that the limiting
distribution of Z; obtained by letting T
tend to infinity is degenerate: it is null for
z less than the lower bound [, and equal to
one for z greater than .

To find a limiting distribution of interest
(that is to say a non-degenerate
distribution), the minimum Z; is reduced
with a scale parameter o (assumed to be
positive) and a location parameter B such
that the distribution of the standardised
minimum (Z— B4)/cr is non-degenerate.
The so-called extreme value theorem
specifies the form of the limiting
distribution as the length of the time-period
over which the minimum 1s selected (the
variable T) tends to infinity. As shown by
Gnedenko,” the limiting distribution of the

minimal return, denoted by F, is given by:
F(z) =1—exp(— (1 + 72" )

for 2<—1/7if 7<0 and for 2> — 1/1if
7> 0. The parameter T, called the tail
index, models the distribution tail.

According to the tail index value, three
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types of extreme value distribution are
distinguished:** the Fréchet distribution
(T<<0) obtained for fat-tailed distributions,
the Gumbel distribution (T = 0) obtained
for thin-tailed distributions and the Weibull
distribution (7> 0) obtained for bounded
distributions. Longin’ showed that extreme
returns in the US equity market seems to
obey to a Fréchet distribution.

In practice, as we are interested in the
distribution of minimal returns (not
standardised extreme returns), the
asymptotic distribution denoted by FZI"™
depends on the three parameters: the scale
parameter «p, the location parameter B
and the tail index T.

Statistical tools

In order to quantify extreme price
movements, we use two statistical tools: the
probability of exceedance of an extreme
price movement of a given level and its
associated waiting time period.

For an extreme price movement of a
given level z, we compute the probability
of exceedance of that level. Denoted by
p™(z), is given by:

Il

p(z) = 1 — F2™(2)

ool (o] o

The probability p™(z) represents the
probability to observe a minimal return

lower or equal to the level z. Inversely, for

a given probability p™, we can compute
the associated level. Denoted by z(p™), it is
given by:

2™ = = Br+ L[ = (= (™) (@)

The second tool that we use to quantify
extreme price movements is the waiting
time period. For an extreme price
movement of size z, it is defined as the
average time to observe a minimal return
lower than or equal to that size. Denoted

by T(z), it is given by:

1

T@) = =y

)

Empirical results

Empirical results are given in Tables 1 to 3.
In Table 1, we give the level of an
extreme price movement in the US equity
market for a given probability of
exceedance or waiting time period. For
example, there is a probability equal to
0.50, that over one year we observe a
minimal daily return lower than or equal to
—2.48 per cent. In other words, we have
to wait on average two years to observe a
minimal daily return lower than or equal to
—2.48 per cent. As the probability
decreases, the waiting time period increases
and the size of the extreme price
movements increases in absolute value. For
example, there is a probability equal to
0.05, that over one year we observe a

minimal daily return lower than or equal to
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Table 1: Level of an extreme price movement in the US equity market for a given
probability of exceedance or waiting time period

Probability of exceedance

0.50

0.20 5
0.10 10
0.05 20
0.02 50
0.01 100

Waiting time period

Extreme price movement

—2.48%
—3.99%
—5.65%
—8.02%
—12.87%
—18.51%

Note: this table gives the level of an extreme price movement in the US equity market for a given

probability of exceedance or waiting time period. An extreme price movement is defined as the

lowest daily return observed over one year. For a given probability of exceedance or waiting time

period, the level of the extreme price movement is computed with the extreme value distribution.

The database used in the estimation of this distribution consists of daily returns on the S&P 500

index over the period July 1962—December 1999 (9,494 observations). Details of the estimation can

be found in Longin.?

—8.02 per cent. In other words, we have

to wait on average 20 years to observe a

minimal daily return lower than or equal to

—8.02 per cent.

Table 2 gives the probability of
exceedance and waiting time period for a
given level of an extreme price movement
in the US equity market. For example, a
minimal daily return over one year of —5
per cent will be exceeded with a
probability equal to 0.127. In other words,
we have to wait on average 7.84 years to
observe a minimal daily return lower than

or equal to —5 per cent. As the level of

the minimal return increases in absolute
value, the probability of exceedance and
the waiting time period increase. For
example, a minimal daily return over one
year of —10 per cent will be exceeded
with a probability equal to 0.032. In other
words, we have to wait on average 30.72
years to observe a minimal daily return
lower than or equal to —10 per cent.

Table 3 gives the probability of
exceedance and waiting time period for the
10th largest extreme price movement in the
US equity market. For example, the

minimal daily return observed over the year
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Table 2: Probability of exceedance and waiting time period for a given level of extreme

price movement in the US equity market

Extreme price movement

0% 1.000
—1% 1.000
—2% 0.711
—3% 0.351
—4% 0.199
—5% 0.127

—10% 0.032
—15% 0.014
—20% 0.009
—25% 0.006

Probability of exceedance

Waiting time period

1.00
1.00
1.41
2.85
5.02
7.84
30.72
67.05
115.84
176.47

Note: this table gives the probability of exceedance and the waiting time period for a given level of

extreme price movement in the US equity market. An extreme price movement is defined as the

lowest daily return observed over one year. The probability of exceedance represents the probability

to observe a minimal return over a year lower than the level. The waiting time period represents

the average time period expressed in years needed to observe a minimal return lower of equal to the

given level. Both variables are computed with the extreme value distribution. The database used in

the estimation of this distribution consists of daily returns on the S&P 500 index over the period

July 1962-December 1999 (9,494 observations). Details of the estimation can be found in Longin.’

1987 occurred on October 19 and was
equal to —18.35 per cent. According to
our estimation, such a minimal return
should be exceeded with a probability
equal to 0.010. In other words, we should
have to wait on average 98.40 years to
observe a minimal daily return lower than

or equal to —18.35 per cent.

EXTREME PRICE MOVEMENTS AND
STOCK MARKET CRASHES

A crash certainly corresponds to a minimal
return over a given period, but the reverse
is not true: a minimal return is not
necessarily a crash. For instance, during
booming periods, yearly minimal returns

are rather small in absolute value: over the
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Table 3: Probability of exceedance and waiting time period for the 10th largest extreme
price movements observed in the US equity market
Extreme price

Probability of Waiting time

Order movement Date exceedance period
1 —18.35% 1987/10/19 0.010 98.40
2 —7.11% 1997/10/24 0.063 15.76
3 —7.04% 1998/08/28 0.065 15.46
4 —6.00% 1988/01/08 0.087 11.27
5 —5.72% 1989/10/13 0.098 10.25
6 —4.48% 1986/09/11 0.159 6.29
7 —3.79% 1982/10/25 0.222 4.51
8 —3.55% 1974/11/18 0.254 3.96
9 —3.30% 1991/11/15 0.291 3.43

10 —=3.29% 1979/10/09 0.293 3.41

Note: this table gives the probability of exceedance and the waiting time period for the 10th largest
extreme price movements observed in the US equity market. An extreme price movement is defined
as the lowest daily return observed over one year. The probability of exceedance represents the
probability to observe a minimal return over a year lower than the level. The waiting time period
represents the average time period expressed in years needed to observe a minimal return lower of
equal to the given level. Both variables are computed with the extreme value distribution. The
database used in the estimation of this distribution consists of daily returns on the S&P 500 index
over the period July 1962-December 1999 (9,494 observations). Details of the estimation can be

found in Longin.?

year 1964, the largest decline of the US
stock market was only —1.38 per cent.
This observation is surely not a crash. This
raises a natural question: how do we define
a crash? In Longin® we discuss the
definition of a crash and propose two

classifications of minimal returns between

crashes and non-crashes observations. We
then test if heterogeneity in the distribution
of the minimal returns could explain the
classification between crashes and
non-crashes. In other words, we wonder if
crashes and non-crashes are drawn from the

same unconditional distribution of extremes.
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Classification of minimal returns:
crashes and non-crashes

Quantitative classification: in the quantitative
classification, an observation of minimal
return is a crash if the minimal return falls
below a given level. To classify the crashes
the level can be fixed arbitrarily or
determined using a statistical measure such
as a multiple of the standard deviations of
daily returns.

This classification insists on the
quantitative aspect of the phenomenon. A
crash corresponds surely to a sharp, brief
decline of the market, but the reverse
appears to be false. In 1934 for example,
the largest decline was —8.15 per cent.
This value is the sixth largest drop in the
US stock market over more than one

century. However, this observation was not

recognised as a crash by market participants.

Apart from the quantitative characteristics,
the crashes also present other aspects
(psychological aspects like panic effects or
micro-structure aspects like the lack of
liquidity, for example), which do not
appear in the data. Stock market crashes are
‘hard to define but recognizable when
encountered’. This leads to a qualitative
classification based on market participants’
opinion.

Qualitative classification: in the qualitative
classification, an observation of minimal
return is a crash if it is recognised by
market participants (investors, brokers,
regulators, etc.) as a crash. We look at the

comments reported in the New York Times

(the only daily newspaper covering the
entire period 1885-1990 of the database
used in Longin)® on the day following the
drop in the stock market. If the words crash
or to crash appear in the newspaper, the
observation of the minimal return is
asterisked as a crash. According to this
procedure, we get 14 observations of
crashes over 115 observations of minimal
returns. The set of crashes can be extended
if we take into account synonyms for the
word crash. In a less restrictive
classification, an observation is called a crash
if one of the words crash, to crash, disaster,
collapse, to collapse, to tumble and to
plunge appear in the articles of the Times.
The second qualitative classification contains
33 observations of crashes (over 115
minimal returns for the period 1885-1990).

The quantitative and qualitative
classifications for the minimal returns are
quite different. Although the two sets of
crashes approximately contain almost the
same number of observations (33 and 31),
the overlap is not perfect: there are only 16
observations of crashes common to the two
classifications.

Our purpose is to test if the classification
of minimal returns between crashes and
non-crashes can be explained by
heterogeneity in the distribution of the
extremes. We wonder if both types of
minimal returns are drawn from the same
unconditional distribution of extremes or
not, or, stated differently, if there is a

source of heterogeneity due to crashes.
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Methodology

To check if there is heterogeneity due to
the crashes in the distribution of extremes,
we separate the whole sample of extremes
into two subsamples according to our
classifications of extremes. For example, the
sample of the 115 minimal returns is
divided into a subsample containing 31
observations of crashes and a subsample
containing 84 observations of non-crashes
according to the quantitative classification.
Second, we estimate the parameters of the
extreme value distribution from the two
subsamples and get two sets of the
parameters estimates of the unconditional
distribution of the minimal returns: one
from the sample of crashes noted 7°, af
and B¢ and another from the sample of
non-crashes noted 7, o) and BY°.
Third, we compare these two sets of
estimates. Our null hypothesis corresponds
to the homogeneity of the distribution of
the minima and can be stated as follows:
1€ = 7€ o€ = g™ and BC = B, If the
observations of both subsamples are drawn
from the same distribution, the null

hypothesis should not be rejected.

Empirical results

For the two classifications the results do not
lead to a rejection of the null hypothesis of
the homogeneity of the distribution of the
extremes. There are no significant
differences between the parameters
estimated from the subsample of the crashes

and from the subsample of the other

minima. In sum, the results show that the
distribution of the extremes is homogenous.
The crashes and non-crashes are likely
drawn from the same unconditional
distribution of extremes. From a statistical
point of view, no difference between both
types of minimal returns is found. No
heterogeneity, which could have explained
the classifications of minimal returns was
found. The conclusion is that crashes are
simply bad draws and not special or
abnormal statistical events. Such a result
justifies the use of the extreme value
distribution to provide quantitative results

about stock market crashes.

CONCLUSION

This paper shows that extreme value theory
can be useful to quantify the risk of a stock
market crash. In particular, we are able to
compute the probability of such events and
their associated waiting time period.

In practice, such information can be used
to define a risk policy of fund management
(say pension fund or mutual fund with
guarantees). For example, stress tests
corresponding to market shocks with a high
waiting time period (10, 50 or 100 years)
could be defined in order to compute the
loss of the assets of the fund. According to
the results of the application of these stress
tests on the asset (and liabilities as well) of
the fund, the manager may reduce the
exposition of the fund or hedge the fund

against adverse events.
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