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ABSTRACT

Testing the hypothesis that international equity market correlation increases in
volatile times is a difficult exercise and misleading results have often been re-
ported in the past because of a spurious relationship between correlation and vol-
atility. Using “extreme value theory” to model the multivariate distribution tails,
we derive the distribution of extreme correlation for a wide class of return distri-
butions. Empirically, we reject the null hypothesis of multivariate normality for
the negative tail, but not for the positive tail. We also find that correlation is not
related to market volatility per se but to the market trend. Correlation increases in
bear markets, but not in bull markets.

INTERNATIONAL EQUITY MARKET CORRELATION has been widely studied. Previous
studies1 suggest that correlation is larger when focusing on large absolute-
value returns, and that this seems more important in bear markets. The
conclusion that international correlation is much higher in periods of vola-
tile markets ~large absolute returns! has indeed become part of the accepted
wisdom among practitioners and the financial press. However, one should
exert great care in testing such a proposition. The usual approach is to con-
dition the estimated correlation on the observed ~or ex post! realization of
market returns. Unfortunately correlation is a complex function of returns
and such tests can lead to wrong conclusions, unless the null hypothesis and

* Longin is director of the Department of Research and Innovation at HSBC CCF Group, a
professor of finance at ESSEC and an affiliate of the CEPR. Solnik is a professor of finance at
HEC. We would like to thank David Bates, Michael Brandt, Bernard Dumas, Paul Embrechts,
Claudia Klüppelberg, Jérôme Legras, Jacques Olivier, Stefan Straetmans, and the participants
at the Bachelier seminar ~Paris, October 1997!, London School of Economics, INSEAD, Univer-
sité de Genève, Université de Lausanne, the American Finance Association meetings ~New
York, January 1999!, the French Finance Association meetings ~Aix-en-Provence, June 1999!,
the workshop on “Extreme Value Theory and Financial Risk” at Münich University of Tech-
nology ~Münich, November 1999! and the CCF Quants conference ~Paris, November 1999! for
their comments. Jonathan Tawn provided many useful suggestions. We also would like to thank
René Stulz ~the editor! and an anonymous referee whose comments and suggestions helped to
greatly improve the quality of the paper. Longin benefited from the financial support of the
CERESSEC research fund and the BSI GAMMA Foundation, and Solnik from the support of
the Fondation HEC.

1 See Lin, Engle, and Ito ~1994!, Erb, Harvey, and Viskanta ~1994!, Longin and Solnik ~1995!,
Karolyi and Stulz ~1996!, Solnik, Bourcrelle, and Le Fur ~1996!, De Santis and Gérard ~1997!,
Ramchmand and Susmel ~1998!, Ang and Bekaert ~1999!, and Das and Uppal ~1999!.

THE JOURNAL OF FINANCE • VOL. LVI, NO. 2 • APRIL 2001

649



its statistics are clearly specified. To illustrate our point, let us consider a
simple example where the distribution of returns on two markets ~say the
United States and the United Kingdom! is multivariate normal with zero
mean, unit standard deviation, and a constant correlation of 0.50. Let us
split the sample in two fractiles ~50 percent! based on absolute values of
U.S. returns. The first fractile consists of “small” returns ~absolute returns
lower than 0.674! and the second fractile consists of “large” returns ~abso-
lute returns higher than 0.674!. Under the assumption of bivariate normal-
ity with constant correlation, the conditional correlation2 of small returns is
0.21 and the conditional correlation of large returns is 0.62. It would be
wrong to infer from this large difference in conditional correlation that cor-
relation differs between volatile and tranquil periods, as correlation is con-
stant and equal to 0.50 by assumption. Boyer, Gibson, and Loretan ~1999!
further show that conditional correlation is highly nonlinear in the level of
return on which it is conditioned. They also indicate that a similar problem
exists when the true data-generating process is not multivariate normal but
follows a GARCH model.

An obvious implication is that one cannot conclude that the “true” corre-
lation is changing over time by simply comparing estimated correlations
conditional on different values of one ~or both! return variable. First, the
distribution of the conditional correlation that is expected under the null
hypothesis ~e.g., a multivariate normal distribution! must be clearly speci-
fied in order to test whether correlation increases in periods of volatile mar-
kets. This has not been done so far.

In this paper, we study the conditional correlation structure of inter-
national equity returns and derive a formal statistical method, based on
extreme value theory. We can derive the asymptotic distribution of condi-
tional tail correlation, which is not possible for other parts of the distribu-
tion of the conditional correlation. Extreme value theory only provides
asymptotic results, but it offers the benefit that its asymptotic results hold
for a wide range of parametric distributions of returns, not only the multi-
variate normal. An attractive feature of the methodology is that the asymp-
totic tail distribution is characterized by very few parameters regardless of
the actual distribution.

A first contribution of this paper is to provide a method to formally test
whether these correlations deviate from what would be expected under multi-
variate normality. More importantly, this paper contributes to the debate on
market correlations in periods of extreme returns by providing a stark em-
pirical distinction between bear and bull markets. High volatility per se ~i.e.,
large absolute returns! does not seem to lead to an increase in conditional
correlation. Correlation is mainly affected by the market trend. We find that
it is only in bear markets that conditional correlation strongly increases;

2 Our results are obtained from simulations of a multivariate normal distribution and can be
easily replicated. Forbes and Rigobon ~1998! and Boyer, Gibson, and Loretan ~1999! provide
some analytical derivations.
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conditional correlation does not seem to increase in bull markets. Our em-
pirical distinction between bear and bull markets has potential implications
for asset allocation and portfolio construction, but we do not explore them
here. Although we do not suggest the exact time-varying distribution that
should be used, our results lead to the rejection of a large class of models
that would be inconsistent with our findings. This is the case of the multi-
variate normal distribution with constant volatility and correlation. It is
also the case of a multivariate GARCH process with time-varying volatilities
but constant correlation, in which extreme returns can be generated by dif-
ferent volatility regimes. Furthermore, Ang and Bekaert ~1999! show that a
fairly general asymmetric GARCH3 also cannot reproduce the asymmetric
correlations that we document. On the other hand, regime-switching models
as proposed by Das and Uppal ~1999! or Ang and Bekaert ~1999! could be
consistent with our empirical findings. The asymmetric correlation pattern
should become a key property for any multivariate equity return model to
match.

The paper is organized as follows: the first section presents some theoret-
ical results about the extremes of univariate and multivariate random pro-
cesses. It summarizes the main results of extreme value theory and draws
the implications for the correlation of extreme returns. The second section
deals with the econometric methodology, the third section presents the em-
pirical results, and the fourth section concludes.

I. Correlation of Extreme Returns: Theory

Extreme value theory involves two modeling aspects: the tails of the mar-
ginal distributions and the dependence structure of extreme observations.

A. The Univariate Case: Modeling of the Distribution Tails

Let us call R the return on a portfolio and FR the cumulative distribution
function of R. The lower and upper endpoints of the associated density func-
tion are denoted by ~l,u!. For example, for a variable distributed normally,
l 5 2` and u 5 1`. In this paper, extreme returns are defined in terms of
exceedances with reference to a threshold denoted by u. For example, posi-
tive u-exceedances correspond to all observations of R greater than the thresh-
old u ~results for negative exceedances can be deduced from those for positive
exceedances by consideration of symmetry!. A return R is higher than u with
probability p and lower than u with probability 1 2 p. The probability p is
linked to the threshold u and the distribution of returns FR by the relation:
p 5 1 2 FR~u!. We focus on the case ~R . u! which defines the ~right! tail of
the distribution of returns.

3 Our simulations lead to similar conclusions. Analytical results cannot be derived except for
the simplest distributions ~normal!.
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The cumulative distribution of u-exceedances, denoted by FR
u and equal to

~FR~x! 2 FR~u!!0~1 2 FR~u!! for x . u, is exactly known if the distribution of
returns FR is known. However, in most financial applications, the distribu-
tion of returns is not precisely known and, therefore, neither is the exact
distribution of return exceedances. For empirical purposes, the asymptotic
behavior of return exceedances needs to be studied. Extreme value theory
addresses this issue by determining the possible nondegenerate limit distri-
butions of exceedances as the threshold u tends to the upper point u of the
distribution. In statistical terms, a limit cumulative distribution function
denoted by GR

u satisfies the following condition: limuru supu,x,u 6FR
u~x! 2

GR
u ~x!65 0. Balkema and De Haan ~1974! and Pickands ~1975! show that the

generalized Pareto distribution ~GPD! is the only nondegenerate distribu-
tion that approximates the distribution of return exceedances FR

u. The limit
distribution function GR

u is given by

GR
u ~x! 5 1 2 ~1 1 j{~x 2 u!0s!1

10j , ~1!

where s, the dispersion parameter, depends on the threshold u and the dis-
tribution of returns FR, and j, the tail index, is intrinsic to the distribution
of returns FR ~the 1 operator gives the positive part of the expression in
parentheses!.

The tail index j gives a precise characterization of the tail of the distri-
bution of returns. Distributions with a power-declining tail ~fat-tailed dis-
tributions! correspond to the case j . 0, distributions with an exponentially
declining tail ~thin-tailed distributions! to the case j 5 0, and distributions
with no tail ~finite distributions! to the case j , 0.

For a particular return distribution, the parameters of the limit distribu-
tion can be computed ~see Embrechts, Klüppelberg, and Mikosch ~1997!!. For
example, the normal and log-normal distributions commonly used in finance
lead to a GPD with j 5 0. The Student-t distributions and stable Paretian
laws lead to a GPD with j . 0 and the uniform distribution belongs to a
GPD with j , 0. The extreme value theorem has also been extended to
processes which are not i.i.d. Leadbetter, Lindgren, and Rootzén ~1983! con-
sider various processes based on the normal distribution: autocorrelated nor-
mal processes, discrete mixtures of normal distributions and mixed diffusion
jump processes. All have thin tails so that they lead to a GPD with j 5 0. De
Haan et al. ~1989! show that if returns follow the GARCH process, then the
extreme return has a GDP with j , 0.5.

To summarize the univariate case, extreme value theory shows that
the distribution of return exceedances can only converge toward a gen-
eralized Pareto distribution. This result is robust as it is also obtained for
non-i.i.d. return processes commonly used in finance. Hence, for a given
threshold, the distribution tail in the univariate case is perfectly described
by three parameters: the tail probability, the dispersion parameter, and the
tail index.
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B. Multivariate Case: Modeling of the Dependence Structure

Let us consider a q-dimensional vector of random variables denoted R 5
~R1, R2, . . . , Rq!. Multivariate return exceedances correspond to the vector of
univariate return exceedances defined with a q-dimensional vector of thresh-
olds u 5 ~u1, u2, . . . , uq!. As for the univariate case, when the return distribu-
tion is not exactly known, we need to consider asymptotic results. The possible
limit nondegenerate distributions GR

u satisfying the limit condition must sat-
isfy two properties:4

1. Its univariate marginal distributions GR1

u1 , @GR2

u2 , . . . ,GRq

uq are generalized
Pareto distributions.

2. There exists a function called the dependence function denoted by DGR
,

which maps from Rq into R, and satisfies the following condition:

GR
u ~x1, x2, . . . , xq! 5 exp~2DGR

~210log GR1

u1 ~x1!,210log GR2

u2 ~x2!,

. . . ,210log GRq

uq ~xq!!!. ~2!

As in the univariate case, the generalized Pareto distribution plays a central
role. However, unlike the univariate case, the multivariate asymptotic dis-
tribution is not completely specified as the shape of the dependence function
DGR

is not known.
When the components of the multivariate distribution of extreme returns

are asymptotically independent, the dependence function DGR
is character-

ized by:

DGR
~ y1, y2, . . . , yq! 5 S 1

y1
1

1

y2
1 . . . 1

1

yq
D, ~3!

where yi 5 210log GRi

ui ~xi !. Actually, asymptotic independence of extreme re-
turns is reached in many cases. Of course, when the components of the re-
turn distribution themselves are independent, exact independence of extreme
returns is obtained. But more surprisingly, asymptotic independence is often
reached when the components of the return distribution are not indepen-
dent. An important example is the multivariate normal distribution ~see
Galambos ~1978, pp. 257–258! and Embrechts, McNeil, and Straumann ~1998!!.

B.1. Asymptotic Independence and Multivariate Normality

If all correlation coefficients between any two components of a multivar-
iate normal process are different from 61, then the return exceedances of all
variables tend to independence as the threshold used to define the tails
tends to the upper endpoint of the distribution of returns ~1` for the normal

4 See Ledford and Tawn ~1997!. A general presentation of multivariate extreme value theory
can be found in Galambos ~1978! and Resnick ~1987!. Specific results for the bivariate case are
given in Tawn ~1988!.
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distribution!. In particular, the asymptotic correlation of extreme returns
is equal to zero. For example, considering a bivariate normal process with
standard mean and variance and a correlation of 0.80, the correlation is
equal to 0.48 for return exceedances one standard deviation away from the
mean, 0.36 for return exceedances two standard deviations away from the
mean, 0.24 for return exceedances three standard deviations away from
the mean and 0.14 for return exceedances four standard deviations away
from the mean. It goes to zero for extreme returns.

At first, the result of asymptotic independence may seem counterintuitive
and at odds with the traditional view of bivariate normality.5 It all depends on
how conditioning is conducted. A slight difference is introduced by condition-
ing on values in the two series, as done in extreme value theory, or on values
in a single series, as done in the introduction of this paper and in most em-
pirical studies. But the major source of difference comes from the conditioning
on absolute values ~two-sided! versus the conditioning on signed values ~one-
sided!. If we condition on the absolute value of realized returns, the condi-
tional correlation of a bivariate normal distribution trivially increases with the
threshold, as mentioned in the introduction. As the normal distribution is sym-
metric, the truncated distribution retains the same mean as the total distri-
bution. But a large positive ~respectively negative! return in one series tends
to be associated with a large positive ~respectively negative! return in the other
series, so the estimated conditional correlation is larger than the “true” con-
stant correlation. Conditional correlation increases with the threshold ~see also
Forbes and Rigobon ~1998! and Boyer et al. ~1999!!. Here, we condition on signed
extremes ~e.g, positive or negative!. The mean of the truncated distribution is
not equal to the mean of the total distribution. As indicated above, the condi-
tional correlation of a multivariate normal distribution decreases with the thresh-
old and reaches zero for extreme returns.A false intuition would be that extreme
returns in two series appear highly correlated as they are large compared with
the mean of all returns. Extreme value theory says that two extreme returns
are not necessarily correlated, as they may not always be large compared with
the mean of extreme returns.

B.2. The General Case

For the general case with asymptotically dependent components for the
multivariate distribution of extreme returns, the form of the dependence
function is not known, and it has to be modeled.6 A model commonly used in
the literature is the logistic function proposed by Gumbel ~1961!.7 The de-
pendence function denoted by Dl is given by

Dl ~ y1, y2, . . . , yq! 5 ~ y1
210a 1 y2

210a 1 . . . 1 yq
210a!a, ~4!

5 We are grateful to an anonymous referee for providing useful insights on this issue.
6 The properties of the asymptotic distribution can be worked only out in very special cases.
7 See also Tawn ~1988! and Straetmans ~1998!.
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where parameter a, controls the level of dependence between extreme re-
turns. In the bivariate case ~q 5 2!, the correlation coefficient r of extremes
is related to the coefficient a by r 5 1 2 a2 ~Tiago de Oliveira, 1973!. The
special cases a 5 1 and a 5 0 correspond respectively to asymptotic inde-
pendence ~ r 5 0! and total dependence ~ r 5 1!.

Although arbitrary, the logistic model used in engineering studies presents
several advantages: It includes the special cases of asymptotic independence
and total dependence, and it is parsimonious, as only one parameter is needed
to model the dependence among extremes. An attractive feature of the meth-
odology is that the asymptotic tail distribution is characterized by very few
parameters regardless of the actual conditional distribution.

To summarize the multivariate case, extreme value theory shows that the
distribution of extreme returns can only converge toward a distribution char-
acterized by generalized Pareto marginal distributions and a dependence
function. The shape of this function is not well defined. Consistent with the
existing literature, we use the logistic function to model the dependence
between extreme returns of different markets. The case where returns are
multivariate normal leads to a limit case of the logistic function where the
asymptotic correlation of extreme returns is equal to zero. We estimate the
dependence function and test whether the correlation of extreme returns is
equal to zero.

II. Correlation of Extreme Returns: Estimation Procedure

The choice of the threshold value is first discussed. The estimation method
for the parameters of the model is then presented.

A. Optimal Threshold Values

The theoretical result about the limit distribution of return exceedances
exactly holds when the threshold u goes to the upper endpoint u of the dis-
tribution of returns. In practice, as the database contains a finite number of
return observations, the threshold used for the estimation of the model is
finite. The choice of its value is a critical issue. On the one hand, choosing a
high value for u leads to few observations of return exceedances and implies
inefficient parameter estimates with large standard errors. On the other
hand, choosing a low value for u leads to many observations of return ex-
ceedances, but induces biased parameter estimates, as observations not be-
longing to the tails are included in the estimation process. To optimize this
trade-off between bias and inefficiency, we use a Monte Carlo simulation
method. Return time series are simulated from a known distribution for
which the tail index can be computed. For each time series, the tail index
value is estimated for different threshold levels. The choice of the optimal
value is based on the mean square error ~MSE! criterion, which allows one
to take into account the trade-off between bias and inefficiency. The proce-
dure is detailed in Appendix 1.
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B. Modeling of the Tails of the Marginal Distributions

The model presented in the previous section is multivariate. In the em-
pirical study, we deal with bivariate models. This choice is justified by a
theoretical result that demonstrates that multivariate independence can be
tested using bivariate pairs of variables ~see Tiago de Oliveira ~1962! and
Reiss ~1989, pp. 234–237!!.

Following Davison and Smith ~1990! and Ledford and Tawn ~1997!, the
limiting result about the distribution of exceedances presented in Section I
is taken to derive a model of the tails of each marginal distribution. Con-
sidering return exceedances defined from returns R1 and R2 in two markets
with thresholds u1 and u2, the tail of the distribution of each return Ri de-
noted by FRi

ui for i 5 1 and 2 is modeled as follows:

FRi

ui ~xi ! 5 ~1 2 pi ! 1 pi{GRi

ui ~xi ! 5 1 2 pi{~1 1 ji{~xi 2 ui !0si !1
210ji , ~5!

which simply expresses that a return Ri either does not belong to the tail
with probability 1 2 pi or is drawn from the limit univariate distribution GRi

ui

of positive return ui-exceedances with probability pi . In other words, for a
return that does not exceed the threshold ui the only relevant information it
conveys to the model is that it occurs below the threshold, not its actual
value. In the construction of the likelihood function, a return Ri below ui is
considered as censored at the threshold.

C. Modeling of the Dependence Structure

Following Ledford and Tawn ~1997!, the dependence function associated
with the distribution of returns FR is modeled with the logistic function Dl
given by equation ~4!. The model FR

u of the bivariate distribution of return
exceedances is given by

FR
u~x1, x2! 5 exp~2Dl ~210log FR1

u1 ~x1!,210log FR2

u2 ~x2!!!. ~6!

For given thresholds u1 and u2, the bivariate distribution of return exceed-
ances is then described by seven parameters: the tail probabilities ~ p1 and
p2!, the dispersion parameters ~s1 and s2! and the tail indexes ~j1 and j2!
for each variable, and the dependence parameter of the logistic function ~a!
or equivalently the correlation of extreme returns ~ r!. The parameters of the
model are estimated by the maximum likelihood method. Details of the con-
struction of the likelihood function are given in Appendix 2.

III. Correlation of Extreme Returns: Empirical Evidence

We estimate the multivariate distribution of return exceedances and test
the null hypothesis of normality focusing on the correlation of extreme returns.
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A. Data

We use monthly equity index returns for five countries: the United States
~US!, the United Kingdom ~UK!, France ~FR!, Germany ~GE!, and Japan
~JA!. Data for the period January 1959 to December 1996 ~456 observations!
come from Morgan Stanley Capital International ~MSCI!. A description of
the data can be found in Longin and Solnik ~1995!.

B. Threshold Values

We consider return exceedances defined with various predetermined thresh-
old levels: 60 percent, 63 percent, 65 percent, 68 percent, and 610 percent
~percentage points! away from the empirical mean of each country. In se-
lecting large thresholds, we are constrained by the fact that there are very
few monthly observations below 210 percent or above 110 percent.

We also consider return exceedances defined with optimal thresholds ~see
Appendix 1!. Optimal threshold values are different for the left tail and the
right tail of the return distribution. For example, considering the United
States, it is optimal to use 25 negative tail observations corresponding to a
threshold of 26.12 percent for the left tail, and 18 positive tail observations
defining a threshold of 17.21 percent for the right tail. Optimal threshold
values also depend on the country. For example, considering the left tail, the
following numbers of negative tail observations with the corresponding thresh-
old values in parentheses are: 25 ~26.12 percent! for the United States, 16
~29.68 percent! for the United Kingdom, 18 ~28.38 percent! for France, 16
~27.84 percent! for Germany, and 16 ~28.53 percent! for Japan. On average,
around 20 to 30 tail observations are used representing a proportion of 4–5
percent of the total number of return observations ~456!.

C. Estimation of the Parameters of the Model

We use a bivariate framework, looking at the correlation of the U.S. mar-
ket with the other four markets separately. Hence, we have four country
pairs: US0UK, US0FR, US0GE, and US0JA. We start with a maximum-
likelihood univariate estimation for each country. The estimated param-
eters, plus the sample unconditional correlation, are then used as starting
values in the maximum-likelihood bivariate estimation.

Tables I to IV present the estimation of the bivariate distribution of return
exceedances of predetermined and optimal values for the threshold u. Esti-
mated coefficients are presented in Panel A for negative return exceedances
~return lower than the threshold u! and in Panel B for positive return ex-
ceedances ~returns higher than the threshold u!. The estimate of the tail
probability p is close to the empirical probability of returns being lower or
higher than the threshold considered. For example, the estimated value of
the probability pUS of U.S. monthly returns lower than u 5 23 percent is
equal to 0.194 with a standard error of 0.018 whereas, over the period Jan-
uary 1959 to December 1996, there are 86 out of 456 monthly returns under
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Table I

Estimation of the Bivariate Distribution of U.S. and U.K. Return Exceedances
This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and U.K. return exceedances ~Panel
A for negative return exceedances and Panel B for positive return exceedances!. Return exceedances are defined with a threshold u. Both fixed
and optimal levels are used for u. Fixed levels ~defined as percentage points! are: 0 percent, 63 percent, 65 percent, 68 percent, and 610 percent
away from the empirically observed means of monthly returns ~the same value of u is then taken for the two countries: u 5 uUS 5 uUK !. Optimal
levels are computed by the procedure described in Appendix 1. They are given for the United States and the United Kingdom on the last line of
each panel. Seven parameters are estimated: the tail probability p, the dispersion parameter s, the tail index j for each country, and the
correlation of return exceedances r of the logistic function used to model the dependence between extreme returns. Standard errors are given
below in parentheses. The null hypothesis of normality H0: r 5 rnor is also tested. Two cases are considered: the asymptotic case and the
finite-sample case. In the asymptotic case, the correlation of normal return exceedances of thresholds tending to infinity, denoted by rnor

asy , is
theoretically equal to 0. In the finite-sample case, the correlation of return exceedances over a given finite threshold u, denoted by rnor

f.s.~u!, is
computed by simulation assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically observed
means and covariance matrix of monthly returns. Both a likelihood ratio test ~LR test! between the constrained model ~r 5 rnor

asy 5 0 in the
asymptotic case and r 5 rnor

f.s.~u! in the finite-sample case! and the unconstrained model, and a Wald test ~W test! on the correlation coefficient
are carried out. The p values of the tests are given below in brackets.

Threshold Parameters of the Model H0: r 5 rnor
asy 5 0 H0: r 5 rnor

f.s.~u!

u pUS sUS jUS pUK sUK jUK rUS0UK LR test W test LR test W test

Panel A: Negative Return Exceedances

210% 0.016 1.480 0.672 0.040 3.188 0.246 0.676 36.465 5.160 11.382 3.573
~0.006! ~0.962! ~0.697! ~0.009! ~1.238! ~0.311! ~0.131! @0.000# @0.000# @0.001# @0.000#

28% 0.034 2.733 0.149 0.062 3.520 0.146 0.600 44.138 5.310 7.653 2.708
~0.008! ~0.901! ~0.240! ~0.011! ~1.074! ~0.244! ~0.113! @0.000# @0.000# @0.006# @0.007#

25% 0.106 2.349 0.157 0.160 2.997 0.151 0.553 73.143 7.681 5.243 2.236
~0.014! ~0.490! ~0.154! ~0.017! ~0.527! ~0.129! ~0.072! @0.000# @0.000# @0.022# @0.025#
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23% 0.194 3.075 0.013 0.194 3.698 0.037 0.579 102.882 10.527 6.261 2.564
~0.018! ~0.403! ~0.080! ~0.018! ~0.459! ~0.083! ~0.055! @0.000# @0.000# @0.012# @0.010#

0% 0.476 3.437 20.044 0.476 4.195 20.017 0.530 120.057 11.778 0.484 0.444
~0.023! ~0.276! ~0.043! ~0.023! ~0.372! ~0.060! ~0.045! @0.000# @0.000# @0.487# @0.657#

26.12 0.056 2.428 0.178 0.036 2.951 0.286 0.578 36.393 4.777 4.606 2.012
29.68% ~0.011! ~0.681! ~0.219! ~0.009! ~1.374! ~0.414! ~0.121! @0.000# @0.000# @0.032# @0.044#

Panel B: Positive Return Exceedances

0% 0.534 3.402 20.156 0.524 3.934 0.012 0.415 57.186 8.137 4.297 21.863
~0.023! ~0.262! ~0.045! ~0.023! ~0.262! ~0.038! ~0.051! @0.000# @0.000# @0.038# @0.062#

13% 0.217 1.911 0.105 0.254 2.853 0.159 0.353 35.244 5.431 2.045 21.308
~0.019! ~0.309! ~0.127! ~0.020! ~0.363! ~0.081! ~0.065! @0.000# @0.000# @0.153# @0.191#

15% 0.072 3.196 20.199 0.132 2.475 0.310 0.360 24.018 4.000 0.205 20.356
~0.012! ~0.732! ~0.153! ~0.016! ~0.492! ~0.142! ~0.090! @0.000# @0.000# @0.651# @0.722#

18% 0.023 2.889 20.274 0.046 2.483 0.548 0.293 9.775 2.093 0.001 20.007
~0.007! ~1.261! ~0.302! ~0.010! ~0.951! ~0.325! ~0.140! @0.002# @0.036# @0.994# @0.994#

110% 0.013 0.976 0.317 0.023 4.468 0.390 0.189 4.521 1.092 0.010 20.110
~0.005! ~0.911! ~0.687! ~0.007! ~2.444! ~0.458! ~0.173! @0.033# @0.275# @0.920# @0.913#

17.21% 0.039 3.020 20.256 0.096 2.449 0.423 0.226 7.638 1.886 0.612 20.714
16.70% ~0.009! ~0.925! ~0.191! ~0.015! ~0.546! ~0.364! ~0.120! @0.006# @0.059# @0.434# @0.475#
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Table II

Estimation of the Bivariate Distribution of U.S. and French Return Exceedances
This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and French return exceedances ~Panel
A for negative return exceedances and Panel B for positive return exceedances!. Return exceedances are defined with a threshold u. Both fixed
and optimal levels are used for u. Fixed levels ~defined as percentage points! are: 0 percent, 63 percent, 65 percent, 68 percent, and 610 percent
away from the empirically observed means of monthly returns ~the same value of u is then taken for the two countries: u 5 uUS 5 uFR !. Optimal
levels are computed by the procedure described in Appendix 1. They are given for the United States and France on the last line of each panel.
Seven parameters are estimated: the tail probability p, the dispersion parameter s, the tail index j for each country, and the correlation of return
exceedances r of the logistic function used to model the dependence between extreme returns. Standard errors are given below in parentheses.
The null hypothesis of normality H0: r 5 rnor is also tested. Two cases are considered: the asymptotic case and the finite-sample case. In the
asymptotic case, the correlation of normal return exceedances of thresholds tending to infinity, denoted by rnor

asy , is theoretically equal to 0. In the
finite-sample case, the correlation of return exceedances over a given finite threshold u, denoted by rnor

f.s.~u!, is computed by simulation assuming
that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically observed means and covariance matrix of
monthly returns. Both a likelihood ratio test ~LR test! between the constrained model ~r 5 rnor

asy 5 0 in the asymptotic case and r 5 rnor
f.s.~u! in the

finite-sample case! and the unconstrained model, and a Wald test ~W test! on the correlation coefficient are carried out. The p values of the tests
are given below in brackets.

Threshold Parameters of the Model H0: r 5 rnor
asy 5 0 H0: r 5 rnor

f.s.~u!

u pUS sUS jUS pFR sFR jFR rUS0FR LR test W test LR test W test

Panel A: Negative Return Exceedances

210% 0.016 1.542 0.744 0.029 4.275 0.072 0.845 55.227 9.826 25.610 7.826
~0.006! ~1.062! ~0.612! ~0.008! ~2.226! ~0.400! ~0.086! @0.000# @0.000# @0.000# @0.000#

28% 0.035 2.459 0.188 0.057 3.130 0.137 0.617 44.458 5.274 10.268 3.197
~0.009! ~0.800! ~0.202! ~0.011! ~0.988! ~0.243! ~0.117! @0.000# @0.000# @0.001# @0.001#

25% 0.111 2.113 0.150 0.186 2.582 0.107 0.474 59.431 6.237 5.169 2.145
~0.015! ~0.404! ~0.128! ~0.018! ~0.394! ~0.106! ~0.076! @0.000# @0.000# @0.023# @0.032#
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23% 0.202 3.204 0.010 0.307 3.367 0.005 0.512 79.326 8.393 4.968 2.492
~0.019! ~0.446! ~0.084! ~0.021! ~0.361! ~0.071! ~0.061! @0.000# @0.000# @0.026# @0.013#

0% 0.437 3.652 20.052 0.504 5.020 20.128 0.493 96.261 10.271 0.536 1.146
~0.023! ~0.310! ~0.049! ~0.023! ~0.384! ~0.041! ~0.048! @0.000# @0.000# @0.464# @0.252#

26.12 0.053 2.384 0.172 0.040 3.256 0.167 0.652 53.308 6.311 14.156 3.958
28.38% ~0.010! ~0.657! ~0.200! ~0.009! ~1.289! ~0.333! ~0.103! @0.000# @0.000# @0.000# @0.000#

Panel B: Positive Return Exceedances

0% 0.525 3.436 20.158 0.496 5.589 20.215 0.347 36.513 6.196 2.886 21.625
~0.023! ~0.270! ~0.047! ~0.023! ~0.429! ~0.040! ~0.056! @0.000# @0.000# @0.089# @0.104#

13% 0.216 1.904 0.104 0.311 3.570 0.069 0.264 20.709 4.000 2.031 21.455
~0.019! ~0.310! ~0.128! ~0.022! ~0.391! ~0.067! ~0.066! @0.000# @0.000# @0.154# @0.146#

15% 0.071 3.186 20.201 0.186 2.660 0.074 0.247 12.535 2.807 0.512 20.727
~0.012! ~0.734! ~0.156! ~0.018! ~0.429! ~0.116! ~0.088! @0.000# @0.005# @0.474# @0.467#

18% 0.024 2.803 20.277 0.061 3.037 0.029 0.134 3.658 1.196 0.819 20.973
~0.007! ~1.217! ~0.293! ~0.011! ~0.868! ~0.213! ~0.112! @0.056# @0.232# @0.365# @0.330#

110% 0.013 0.986 0.320 0.034 2.006 0.348 0.159 3.699 1.053 0.006 20.086
~0.005! ~0.872! ~0.697! ~0.008! ~0.995! ~0.433! ~0.151! @0.054# @0.292# @0.938# @0.931#

17.21 0.041 2.878 20.263 0.041 2.840 0.095 0.116 3.068 1.111 0.695 20.874
19.90% ~0.010! ~0.909! ~0.207! ~0.009! ~1.116! ~0.317! ~0.105! @0.080# @0.267# @0.405# @0.382#
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Table III

Estimation of the Bivariate Distribution of U.S. and German Return Exceedances
This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and German return exceedances ~Panel
A for negative return exceedances and Panel B for positive return exceedances!. Return exceedances are defined with a threshold u. Both fixed
and optimal levels are used for u. Fixed levels ~defined as percentage points! are: 0 percent, 63 percent, 65 percent, 68 percent, and 610 percent
away from the empirically observed means of monthly returns ~the same value of u is then taken for the two countries: u 5 uUS 5 uGE !. Optimal
levels are computed by the procedure described in Appendix 1. They are given for the United States and Germany on the last line of each panel.
Seven parameters are estimated: the tail probability p, the dispersion parameter s, the tail index j for each country and the correlation of return
exceedances r of the logistic function used to model the dependence between extreme returns. Standard errors are given below in parentheses.
The null hypothesis of normality H0: r 5 rnor is also tested. Two cases are considered: the asymptotic case and the finite-sample case. In the
asymptotic case, the correlation of normal return exceedances of thresholds tending to infinity, denoted by rnor

asy , is theoretically equal to 0. In the
finite-sample case, the correlation of return exceedances over a given finite threshold u, denoted by rnor

f.s.~u!, is computed by simulation assuming
that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically observed means and covariance matrix of
monthly returns. Both a likelihood ratio test ~LR test! between the constrained model ~r 5 rnor

asy 5 0 in the asymptotic case and r 5 rnor
f.s.~u! in the

finite-sample case! and the unconstrained model, and a Wald test ~W test! on the correlation coefficient are carried out. The p values of the tests
are given below in brackets.

Threshold Parameters of the Model H0: r 5 rnor
asy 5 0 H0: r 5 rnor

f.s.~u!

u pUS sUS jUS pGE sGE jGE rUS0GE LR test W test LR test W test

Panel A: Negative Return Exceedances

210% 0.016 1.533 0.554 0.024 5.802 20.147 0.656 29.221 4.100 11.966 3.375
~0.006! ~1.524! ~1.255! ~0.007! ~4.939! ~0.877! ~0.160! @0.000# @0.000# @0.001# @0.001#

28% 0.031 2.476 0.185 0.053 2.090 0.404 0.512 34.515 4.096 8.365 2.576
~0.008! ~0.859! ~0.206! ~0.010! ~0.869! ~0.375! ~0.125! @0.000# @0.000# @0.004# @0.010#

25% 0.110 2.432 0.129 0.132 3.083 0.092 0.507 58.560 6.418 10.012 3.127
~0.015! ~0.521! ~0.142! ~0.016! ~0.551! ~0.126! ~0.079! @0.000# @0.000# @0.002# @0.002#
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23% 0.201 2.786 0.016 0.254 2.884 0.090 0.440 63.744 6.984 4.596 2.048
~0.019! ~0.346! ~0.065! ~0.020! ~0.404! ~0.105! ~0.063! @0.000# @0.000# @0.032# @0.041#

0% 0.503 3.176 20.034 0.489 4.155 20.065 0.435 81.706 8.878 1.488 1.204
~0.023! ~0.245! ~0.041! ~0.023! ~0.347! ~0.050! ~0.049! @0.000# @0.000# @0.223# @0.229#

26.12 0.060 2.367 0.153 0.043 3.102 0.260 0.482 32.161 3.891 5.645 2.210
27.84% ~0.015! ~0.652! ~0.187! ~0.009! ~1.910! ~0.674! ~0.124! @0.000# @0.000# @0.018# @0.027#

Panel B: Positive Return Exceedances

0% 0.511 3.593 20.172 0.511 4.434 20.140 0.276 19.448 4.600 4.115 21.667
~0.023! ~0.295! ~0.048! ~0.023! ~0.397! ~0.065! ~0.060! @0.000# @0.000# @0.042# @0.096#

13% 0.229 1.766 0.122 0.257 3.628 20.105 0.165 7.465 2.500 4.774 22.212
~0.020! ~0.275! ~0.117! ~0.020! ~0.482! ~0.099! ~0.066! @0.006# @0.012# @0.029# @0.027#

15% 0.068 3.376 20.219 0.143 3.320 20.093 0.189 6.098 2.124 0.637 20.798
~0.011! ~0.823! ~0.172! ~0.016! ~0.628! ~0.146! ~0.089! @0.014# @0.034# @0.425# @0.425#

18% 0.026 2.670 20.226 0.053 4.069 20.373 0.020 0.001 0.192 2.482 21.635
~0.008! ~1.127! ~0.328! ~0.010! ~1.192! ~0.223! ~0.104! @0.998# @0.848# @0.115# @0.102#

110% 0.014 0.939 0.376 0.031 3.928 20.511 0.000 0.001 0.000 1.545 20.314
~0.006! ~0.812! ~0.795! ~0.009! ~1.574! ~0.302! ~0.370! @0.999# @0.999# @0.214# @0.754#

17.21 0.040 3.174 20.243 0.042 4.888 20.533 0.078 0.7484 0.757 0.740 20.904
19.01% ~0.009! ~0.950! ~0.176! ~0.009! ~1.510! ~0.242! ~0.104! @0.387# @0.449# @0.390# @0.366#
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Table IV

Estimation of the Bivariate Distribution of U.S. and Japanese Return Exceedances
This table gives the maximum likelihood estimates of the parameters of the bivariate distribution of U.S. and Japanese return exceedances
~Panel A for negative return exceedances and Panel B for positive return exceedances!. Return exceedances are defined with a threshold u. Both
fixed and optimal levels are used for u. Fixed levels ~defined as percentage points! are: 0 percent, 63 percent, 65 percent, 68 percent, and 610
percent away from the empirically observed means of monthly returns ~the same value of u is then taken for the two countries: u 5 uUS 5 uJA !.
Optimal levels are computed by the procedure described in Appendix 1. They are given for the United States and Japan on the last line of each
panel. Seven parameters are estimated: the tail probability p, the dispersion parameter s, the tail index j for each country and the correlation
of return exceedances r of the logistic function used to model the dependence between extreme returns. Standard errors are given below in
parentheses. The null hypothesis of normality H0: r 5 rnor is also tested. Two cases are considered: the asymptotic case and the finite-sample
case. In the asymptotic case, the correlation of normal return exceedances of thresholds tending to infinity, denoted by rnor

asy , is theoretically equal
to 0. In the finite-sample case, the correlation of return exceedances over a given finite threshold u, denoted by rnor

f.s.~u!, is computed by simulation
assuming that monthly returns follow a bivariate-normal distribution with parameters equal to the empirically observed means and covariance
matrix of monthly returns. Both a likelihood ratio test ~LR test! between the constrained model ~r 5 rnor

asy 5 0 in the asymptotic case and r 5
rnor

f.s.~u! in the finite-sample case! and the unconstrained model, and a Wald test ~W test! on the correlation coefficient are carried out. The
p values of the tests are given below in brackets.

Threshold Parameters of the Model H0: r 5 rnor
asy 5 0 H0: r 5 rnor

f.s.~u!

u pUS sUS jUS pJA sJA jJA rUS0JA LR test W test LR test W test

Panel A: Negative Return Exceedances

210% 0.016 1.581 0.762 0.036 3.346 20.073 0.400 13.262 2.516 7.380 2.145
~0.006! ~1.124! ~0.667! ~0.008! ~1.044! ~0.186! ~0.159! @0.000# @0.012# @0.007# @0.032#

28% 0.034 2.742 0.169 0.064 3.791 20.095 0.309 13.072 2.512 3.934 1.715
~0.008! ~0.959! ~0.238! ~0.011! ~0.970! ~0.160! ~0.123! @0.000# @0.012# @0.047# @0.086#

25% 0.100 2.356 0.178 0.158 3.215 0.018 0.326 25.036 4.025 4.888 2.123
~0.014! ~0.520! ~0.164! ~0.017! ~0.562! ~0.127! ~0.081! @0.000# @0.000# @0.027# @0.034#
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23% 0.195 3.085 0.014 0.239 4.092 20.082 0.298 25.644 4.319 1.404 1.304
~0.019! ~0.432! ~0.084! ~0.020! ~0.518! ~0.084! ~0.069! @0.000# @0.000# @0.236# @0.192#

0% 0.487 3.516 20.047 0.491 4.385 20.096 0.281 29.781 5.018 0.040 0.375
~0.023! ~0.296! ~0.047! ~0.023! ~0.378! ~0.055! ~0.056! @0.000# @0.000# @0.842# @0.708#

26.12 0.050 2.660 0.158 0.043 4.006 20.149 0.311 14.625 2.669 3.127 1.511
28.53% ~0.009! ~0.759! ~0.173! ~0.009! ~1.187! ~0.170! ~0.117! @0.000# @0.008# @0.077# @0.131#

Panel B: Positive Return Exceedances

0% 0.511 3.256 20.145 0.509 4.530 20.174 0.171 10.743 3.000 1.563 21.561
~0.023! ~0.252! ~0.046! ~0.023! ~0.381! ~0.053! ~0.056! @0.001# @0.003# @0.211# @0.118#

13% 0.208 1.829 0.112 0.250 3.713 20.105 0.153 7.695 2.468 0.460 20.887
~0.019! ~0.291! ~0.121! ~0.020! ~0.509! ~0.100! ~0.062! @0.006# @0.014# @0.497# @0.375#

15% 0.070 3.270 20.199 0.136 3.927 20.174 0.183 6.100 2.080 0.126 0.330
~0.012! ~0.793! ~0.177! ~0.016! ~0.733! ~0.140! ~0.088! @0.014# @0.038# @0.723# @0.742#

18% 0.025 2.956 20.292 0.059 3.875 20.306 0.072 0.631 0.643 0.038 20.232
~0.007! ~1.270! ~0.324! ~0.011! ~1.014! ~0.185! ~0.112! @0.427# @0.520# @0.845# @0.816#

110% 0.014 1.040 0.324 0.033 3.540 20.365 0.091 0.645 0.636 0.055 0.224
~0.005! ~0.866! ~0.757! ~0.008! ~1.274! ~0.269! ~0.143! @0.422# @0.525# @0.815# @0.823#

17.21 0.037 3.257 20.208 0.039 3.286 20.276 0.077 1.032 0.788 0.175 20.569
110.27% ~0.008! ~0.793! ~0.251! ~0.009! ~1.142! ~0.269! ~0.099! @0.310# @0.430# @0.675# @0.569#
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23 percent, leading to an empirical frequency of 0.189. The dispersion pa-
rameter and the tail index are not estimated with great precision. The sign
of the tail index for high threshold values gives some indication regarding
the type of asymptotic distribution of extreme returns: the estimates of the
tail index are mostly positive for the U.S., the U.K., and the French mar-
kets,8 and mostly negative for the German and Japanese markets. However,
none of these results can be considered statistically significant.

Results for the correlation coefficient of return exceedances are particu-
larly interesting: The correlation seems to be inf luenced both by the size and
the sign of the thresholds used to define the extremes. It is also different
from the usual correlation, that is to say the correlation computed using all
the observations of returns. We will describe the results using the US0UK
pair as an example. The usual correlation of monthly returns is equal to
0.519 for the US0UK pair. The correlation of return exceedances tends to
increase when we look at negative return exceedances defined with lower
thresholds: It is equal to 0.530 for u 5 20 percent ~negative semicorrelation!,
0.579 for u 5 23 percent, 0.553 for u 5 210 percent ~Table I, Panel A!. On
the other hand, correlation tends to decrease with the level of the threshold
when we look at positive return exceedances: It is equal to 0.415 for u 5 10
percent ~positive semicorrelation!, 0.353 for u 5 13 percent, 0.360 for u 5 15
percent, 0.293 for u 5 18 percent, and only 0.189 for u 5 110 percent ~Table I,
Panel B!. The correlation u goes up with the absolute size of the threshold if
it is negative and goes down with the threshold if positive. This is illustrated
graphically on Figure 1, which depicts the relation between the correlation
of return exceedances and the threshold used to define them. The solid line
indicates the estimated correlation as a function of the threshold. It starts at
the ~negative or positive! semicorrelation for a threshold of u 5 20 percent or
u 5 10 percent. A similar conclusion obtains for the other country pairs as
seen in Tables II, III, and IV and Figures 2, 3, and 4.

The asymmetry between negative and positive return exceedances is con-
firmed by results obtained with optimal thresholds. As shown on the last
lines of Tables I to IV, for all country pairs, the correlation between negative
return exceedances is always greater than the correlation between positive
return exceedances. On average, the former is equal to 0.505 whereas the
latter is equal to 0.124. The difference is statistically significant at the 5
percent confidence level in three cases out of four ~US0UK, US0FR, and
US0GE!. For example, considering the US0UK pair, the correlation between
negative return exceedances ~with the standard error in parentheses! is equal
to 0.578 ~0.121! whereas the correlation between positive return exceedances
is equal to 0.226 ~0.120!. The value of a t test between the two correlation
coefficients is equal to 2.066 with a p value of 0.039 ~independence between
negative and positive return exceedances is assumed to compute the t test!.

8 Jansen and De Vries ~1991!, Loretan and Phillips ~1994!, and Longin ~1996 and 2000!
obtained similar results in univariate studies for the United States.
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D. Test of Normality

We also test the null hypothesis of normality H0: r 5 rnor , where rnor
stands for the correlation between normal return exceedances. Under the
null hypothesis of normality, this correlation coefficient tends to zero as the
threshold value goes to infinity ~see Section I!. As we work with a finite
sample, we can only use finite threshold values. Two cases are then formally
considered: the asymptotic case and the finite-sample case. In the asymp-
totic case, the correlation of normal return exceedances of thresholds tending
to infinity, denoted by rnor

asy , is theoretically equal to 0. In the finite-sample
case, the correlation of return exceedances over a given finite threshold u,
denoted by rnor

f.s.~u!, is computed by simulation. We compute the correlation
between normal return exceedances for the predetermined threshold values
considered above and for optimal threshold values. This is done by using a
simulated bivariate normal process with means and covariance matrix equal
to their empirical counterparts. Given these parameters, which fully de-
scribe a multivariate normal process, there is only one theoretical value for
the correlation of return exceedances at a given threshold level. As indicated
in the theoretical section, this “normal” correlation coefficient decreases with

Figure 1. Correlation between U.S. and U.K. return exceedances. This figure represents
the correlation structure of return exceedances between the United States and the United King-
dom. The solid line represents the correlation between actual return exceedances obtained from
the estimation of the bivariate distribution modeled with the logistic function ~see results in
Table I!. The dotted line represents the theoretical correlation between simulated normal re-
turn exceedances, rnor , assuming a multivariate-normal return distribution with parameters
equal to the empirically observed means and covariance matrix of monthly returns. The value
of the threshold u used to define return exceedances ranges from 210 percent to 110 percent
~percentage points!. For a given estimation, the same value of u is taken for both countries:
u 5 uUS 5 uUK. The usual correlation using all returns is represented by a large dot on the
vertical axis.
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the absolute size of the threshold. For example, for the US0UK pair, the
normal correlation of positive return exceedances computed numerically de-
creases with the threshold: It is equal to 0.51 for u 5 10 percent, 0.44 for
u 5 13 percent, 0.39 for u 5 15 percent, 0.29 for u 5 18 percent, and only
0.21 for u 5 110 percent. In each figure, the dotted line plots the normal
correlation as a function of the threshold. As seen in Figure 1, the US0UK
correlation of return exceedances is close to its normal value for positive
thresholds, but is markedly larger for negative thresholds.

Formal tests of the null hypothesis of normality are provided in the last
columns of Tables I to IV. First, a likelihood ratio test between the con-
strained model ~corresponding to normality! and the unconstrained model is
carried out. Second, a Wald test on the correlation coefficient is done. For a
given threshold, the Wald test compares the estimated correlation of return
exceedances to its theoretical value under the hypothesis of normal returns.
Both the asymptotic and finite-sample cases are considered. For all country
pairs, the null hypothesis of normality is always rejected for high negative
thresholds at the 5 percent confidence level. Taking as an example the pair
US0UK and the threshold u 5 25 percent, the likelihood ratio test strongly

Figure 2. Correlation between U.S. and French return exceedances. This figure repre-
sents the correlation structure of return exceedances between the United States and France.
The solid line represents the correlation between actual return exceedances obtained from the
estimation of the bivariate distribution modeled with the logistic function ~see results in Table II!.
The dotted line represents the theoretical correlation between simulated normal return exceed-
ances, rnor , assuming a multivariate-normal return distribution with parameters equal to the
empirically observed means and covariance matrix of monthly returns. The value of the thresh-
old u used to define return exceedances ranges from 210 percent to 110 percent ~percentage
points!. For a given estimation, the same value of u is taken for both countries: u 5 uUS 5 uFR.
The usual correlation using all returns is represented by a large dot on the vertical axis.
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rejects the null hypothesis of normality. The test value is equal to 73.143
with a negligible p value for the asymptotic case, and equal to 5.243 with a
p value equal to 0.022 for the finite-sample case ~Table I, Panel A!. Similarly,
the Wald test on the correlation coefficient itself strongly rejects the null
hypothesis of normality. The test value is equal to 7.681 with a negligible p
value for the asymptotic case, and equal to 2.236 with a p value equal to
0.025 for the finite-sample case. The difference in correlation is economically
large ~0.55 instead of 0.39! and statistically significant ~a similar conclusion
is obtained when exceedance returns are defined with optimal thresholds!.
This phenomenon is illustrated graphically for each pair of countries in Fig-
ures 1 to 4. For high negative threshold values, the solid line representing
the estimated correlation of return exceedances moves away from the dotted
line representing the theoretical correlation under normality. It should be
noted that this result does not depend on one outlier, such as the October
1987 crash. Over the 38-year span, the British market, for example, had 29
monthly returns below 28 percent and 19 below 210 percent.

To summarize, the correlation structure of large returns is asymmetric.
Correlation tends to decrease with the absolute size of the threshold for

Figure 3. Correlation between U.S. and German return exceedances. This figure rep-
resents the correlation structure of return exceedances between the United States and Ger-
many. The solid line represents the correlation between actual return exceedances obtained
from the estimation of the bivariate distribution modeled with the logistic function ~see results
in Table III!. The dotted line represents the theoretical correlation between simulated normal
return exceedances, rnor , assuming a multivariate-normal return distribution with parameters
equal to the empirically observed means and covariance matrix of monthly returns. The value
of the threshold u used to define return exceedances ranges from 210 percent to 110 percent
~percentage points!. For a given estimation, the same value of u is taken for both countries:
u 5 uUS 5 uGE. The usual correlation using all returns is represented by a large dot on the
vertical axis.
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positive returns, as expected in the case of multivariate normality, but tends
to increase for negative returns. So the probability of having large losses
simultaneously on two markets is much larger than would be suggested un-
der the assumption of multivariate normality. It appears that it is a bear
market, rather than volatility per se, that is the driving force in increasing
international correlation.

IV. Conclusion

We use extreme value theory to study the dependence structure of inter-
national equity markets. We explicitly model the multivariate distribution
of large returns ~beyond a given threshold! and estimate the correlation for
increasing threshold levels. Under the assumption of multivariate normality
with constant correlation, the correlation of large returns ~beyond a given
threshold! should asymptotically go to zero as the threshold level increases.
This is not the case in our estimation based on 38 years of monthly data for
the five largest stock markets, at least for large negative returns. The cor-
relation of large negative returns does not converge to zero, but tends to

Figure 4. Correlation between U.S. and Japanese return exceedances. This figure rep-
resents the correlation structure of return exceedances between the United States and Japan.
The solid line represents the correlation between actual return exceedances obtained from the
estimation of the bivariate distribution modeled with the logistic function ~see results in Table IV!.
The dotted line represents the theoretical correlation between simulated normal return exceed-
ances, rnor , assuming a multivariate-normal return distribution with parameters equal to the
empirically observed means and covariance matrix of monthly returns. The value of the thresh-
old u used to define return exceedances ranges from 210 percent to 110 percent ~percentage
points!. For a given estimation, the same value of u is taken for both countries: u 5 uUS 5 uJA.
The usual correlation using all returns is represented by a large dot on the vertical axis.
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increase with the threshold level, and rejection of multivariate normality is
highly significant statistically. On the other hand, the correlation of large
positive returns tends to decrease and to converge to zero with the threshold
level, and the assumption of multivariate normality cannot be rejected. In
other words, our results favor the explanation that correlation increases in
bear markets, but not in bull markets.

The conclusion that volatility per se does not affect correlation in bull
markets is at odds with some previous findings. One explanation provided
above is that the null hypothesis of multivariate normality with constant
correlation must be properly specified when conditioning on some realized
level of return or volatility. Under the assumption of multivariate normality
~with constant correlation!, correlation conditioned on the level of volatility
~absolute value of return! is expected to markedly increase with the level of
volatility. So, tests of normality should model this feature in the null hy-
pothesis. Here, we focus on the tail of the distribution whose asymptotic
properties can be modeled and we derive a formal statistical method, based
on extreme value theory, to test whether the correlation of large returns is
higher than expected under the assumption of multivariate normality. An
attractive feature of the methodology is that the asymptotic tail distribution
is characterized by very few parameters regardless of the actual distribu-
tion. Asymptotic conditional correlation should be equal to zero for a wide
class of return distributions. Although we do not suggest the exact time-
varying distribution that should be used, our results lead to the rejection of
a large class of models that would be inconsistent with our findings. This is
the case of the multivariate normal distribution. It is also the case of a
multivariate GARCH with constant correlation. Simulations for such a model
calibrated to the data show that the conditional correlation goes to zero for
extreme returns. More importantly, Ang and Bekaert ~1999! show that a
fairly general asymmetric GARCH also cannot reproduce the asymmetric
correlations that we document. Although GARCH models seem ill suited to
derive implications for bear and bull markets that are consistent with our
findings, other models can. For example Ang and Bekaert ~1999, p. 17! in-
dicate that a regime-switching, return-generating process is able to repro-
duce our asymmetric findings. The disadvantage of our approach is that we
do not explicitly specify the class of return-generating processes that are
rejected. The advantage of our approach is that the empirical results do not
depend on a specific return-generating process and are therefore fairly robust.

The next step would be to assess whether these findings materially affect
international portfolio choices. Some recent papers are explicitly using return-
generating processes that exhibit a regime-switching correlation increasing
with volatility, and they study the portfolio choice implications. Ang and
Bekaert ~1999! and Das and Uppal ~1999! develop different regime-switching
models and reach different conclusions about portfolio implications. Ang and
Bekaert ~1999, p. 30! conclude that “the costs of ignoring regime switching
are small for moderate levels of risk aversion,” whereas Das and Uppal ~1999
abstract! state that “there are substantial differences in the portfolio weights
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across regimes.” The difference in conclusion may come from the return-
generating process postulated, especially how correlation increases in bear
and bull markets.

Appendix 1: Computation of Optimal Threshold Levels

An optimal threshold level can be obtained by optimizing the trade-off
between bias and inefficiency. To solve this problem, we use a Monte Carlo
simulation method inspired by Jansen and de Vries ~1991!.9 This appendix
describes the procedure in detail.

A particular model for returns is assumed. For each simulated time series
of returns, the optimal number of return exceedances ~or equivalently the
optimal threshold level! is computed. The MSE of simulated optimal num-
bers of return exceedances is then computed to derive the number of return
exceedances for the observed time series. As explained by Theil ~1971, pp. 26–
32!, the MSE criterion allows one to take explicitly into account the two
effects of bias and inefficiency. The MSE of S simulated observations EXs of
the estimator of a parameter X can be decomposed as follows:

MSE~~ EXs!s51,S , X ! 5 ~ QX 2 X !2 1
1

S (
s51

S

~ EXs 2 X !2,

where QX represents the mean of S simulated observations. The first part of
the decomposition measures the bias and the second part the inefficiency.

The procedure can be decomposed in four steps:

1. First we simulate S time series containing T return observations from
Student-t distributions with k degrees of freedom, the integer k rang-
ing from 1 to K. The class of the Student-t distributions is chosen to
consider different degrees of tail fatness. The lower the degrees of free-
dom, the fatter the distribution as the tail index j is related to k by
j 5 10k. For the simulations, we take: S 5 1,000, T 5 456, and K 5 10.

2. For different numbers n of return exceedances, we obtain a tail index
estimate Djs~n, k! corresponding to the sth simulated time series and to
the Student-t distribution with k degrees of freedom. To identify the
optimal number of return exceedances, we focus on the tail index as
this parameter models the distribution tails. We choose the values of n
ranging from 0.01{T to 0.20{T such that proportions from 1 percent to
20 percent of the total number T of return observations are used in the
estimation procedure.

3. For a Student-t distribution with k degrees of freedom and for each
number n of return exceedances, we compute the MSE of the S tail

9 See also Beirlant, Vynckier, and Teugels ~1996! and Huisman et al. ~1998!.
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index estimates, denoted by MSE ~~ Djs~n, k!!s51, S !. As explained by
Jansen and de Vries ~1991!, there is a U-shaped relation between
MSE~~ Djs~n, k!!s51,S ! and n, which expresses the trade-off between bias
and inefficiency. For high values of n, the inclusion of many observa-
tions such that some do not belong to the tail but rather to the center
of the distribution makes the bias part of the MSE dominate the inef-
ficiency part. On the other hand, for low values of n, the inclusion of
few observations makes the inefficiency part of the MSE dominate the
bias part as the tail index is badly estimated. We then select the num-
ber of return exceedances that minimizes the MSE. This number, de-
noted by n*~k!, is optimal for a Student-t distribution with k degrees of
freedom.10

4. For the K optimal numbers of return exceedances previously obtained
by simulation, ~n*~k!!k51, K , we compute the tail index estimates of
the observed time series of actual returns, denoted by Dj~n*~k!! for k
ranging from 1 to K. We then select the number of return exceed-
ances for which the corresponding tail index estimate is statistically
the closest to the tail index defined in the simulation procedure, that
is to say 10k ~we consider the p value of the t test of the following
hypothesis: Dj~n*~k!! 5 10k!. This number, denoted by n*, is considered
to be the optimal number of return exceedances for the distribution
of actual returns. In the estimation of the model, we use the optimal
threshold u* associated with the optimal number of return exceed-
ances n*.

Appendix 2: Derivation of the Maximum Likelihood Function

The parameters of the model presented in Section II are estimated by the
maximum likelihood method developed by Ledford and Tawn ~1997!. This
appendix presents the construction of the likelihood function in detail.

The method is based on a set of assumptions. Returns are assumed to be
independent. The thresholds u1 and u2 used to select return exceedances ~or
equivalently the tail probabilities p1 and p2! are independent of returns and
time. The method is also based on a censoring assumption. For thresholds u1
and u2, the space of return values is divided into four regions given by $Ajk; j 5
I ~R1 . u1!, k 5 I ~R2 . u2!%, where I is the indicator function. The method
treats return observations below threshold as censored data. Finally, the
dependence between extreme returns is modeled using a logistic function
denoted by Dl .

10 The optimal number of return exceedances is an increasing function of the fatness of the
simulated Student-t distribution. For example, it is equal to 64 for a Student-t distribution with
one degree of freedom and 25 for a Student-t distribution with five degrees of freedom. The
fatter the distribution, the higher the number of return exceedances used in the estimation of
the tail index as more extreme observations are available.
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The likelihood contribution corresponding to the observation of returns at
time t ~R1t , R2t ! falling in region Ajk is denoted by Ljk~R1t , R2t ! and given by

L00~R1t , R2t ! 5 FR
u~R1t , R2t ! 5 exp~2Dl ~Y1,Y2!!,

L01~R1t , R2t ! 5
?FR

u~R1t , R2t !

?R2t
5 exp~2Dl ~Y1,Z2!!{

?Dl

?R2t
~Y1,Z2!{K2,

L10~R1t , R2t ! 5
?FR

u~R1t , R2t !

?R1t
5 exp~2 Dl ~Z1,Y2!!{

?Dl

?R1t
~Z1,Y2!{K1,

L11~R1t , R2t ! 5
?2FR

u~R1t , R2t !

?R1t ?R2t
5 exp~2 Dl ~Z1,Z2!!

3 S ?Dl

?R1t
~Z1,Z2!

?Dl

?R2t
~Z1,Z2! 2

?2Dl

?R1t ?R2t
~Z1,Z2!D{K1{K2,

where the variables Yi , Zi , and Ki for i 5 1 and 2 are defined by

Yi 5 210log FRi

ui ~ui !,

Zi 5 210log FRi

ui ~Rit !,

Ki 5 2pi{si
21{~1 1 ji{~Rit 2 ui !0si !1

2~11ji !0ji{Zi
2{exp~10Zi !.

The likelihood contribution from the observation of returns at time
t ~R1t , R2t ! for the bivariate distribution of return exceedances described by
a set of parameters F 5 ~ p1, p2, s1, s2, j1, j2, a! is given by

L~R1t , R2t , F! 5 (
j, k[$0,1%

Ljk~R1t , R2t !{Ijk~R1t , R2t !,

where Ijk~R1t , R2t ! 5 I $~R1t , R2t ! [ Ajk%. Hence the likelihood for a set of T
independent observations of returns is given by

L~$R1t , R2t %t51,T , F! 5 )
t51

T

L~R1t , R2t , F!.
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