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Abstract Portfolio insurance has traditionally taken two forms: the buying of put
options and the dynamic replication of a given risk profile. While the first method often
presents a prohibitive cost and lacks flexibility especially in terms of maturity choice,
the second method does not always lead to the expected risk/return profile owing to
market imperfections such as market illiquidity. This paper shows how new financial
derivatives, referred to here as crash options, could be used to protect investors’
portfolios during periods of extreme volatility against a sharp, large decline in the
position value. A detailed empirical study is carried out for the US stock market using a
database of daily return covering the period 1885-1999. Some results are also given for
the European stock market over the recent period 1992-2001.
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Introduction

Market crashes: magic words which will
definitely attract the attention of every
financial investor. Although all market
participants would certainly care about
such extraordinary events, no research
work has ever attempted to give a
rigorous quantification of their meaning.
In this paper, extreme value theory is
used to specify the distribution of
extreme returns observed during stock
market crashes. Extreme value theory is a
statistical theory which allows one to
quantify the behaviour of extreme price
movements. Empirically, it is shown that
these extraordinary events are well
described by the Fréchet distribution. A

a new portfolio management instrument
called crash option is then proposed to
insure the portfolio value against a
market crash.

Risk is one of the most important
factors in the management of financial
assets. The efficiency of risk management
methods such as portfolio insurance is,
however, largely undermined during
periods of extreme volatility such as in
stock market booms and crashes.' As
stressed by Rubinstein and Leland
(1981), the accuracy of portfolio
insurance [see Boulier and Sikorav (1992)
for a description of methods based on
the replication of options with positions
in stock and cash] critically depends on
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the process followed by the market price:
the possibility of gap openings, jump
movements and unanticipated changes in
volatility may undermine the strategy
during periods of market stress.
Moreover, portfolio insurance may be
liable to have a destabilising effect on the
market during these periods.” In any
event, such a dynamic hedging technique
has been used less by market participants
since the last stock market crash of
October 1987.°

To improve the performance of
portfolio insurance techniques, especially
during periods of market stress, this paper
proposes new financial derivatives called
crash options whose purpose is to protect
the value of a long position against a
sharp, large decline in market prices.*
Portfolio managers could use crash
options to limit their extreme downside
risk. Crash options complete the
spectrum of existing options, as they
focus on extreme price changes during a
short period. In their conception, crash
options are relatively close to lookback
options,” whose payoff depends on the
maximal or minimal price reached by the
expiration date. Although lookback
options deal with the difterence between
the price at the expiration date and its
maximum or minimum reached during
their lifetime, crash options deal with the
minimal price changes computed over a
short period of time.

The remainder of this paper is
organised as follows: a statistical study
about extreme returns is first presented
to motivate the introduction of new
financial derivatives: it shows that the
market is not a Gaussian market but a
Fréchet market, as defined in Longin
(1996a), characterised by large price
movements; a detailed study is also done
for extreme returns corresponding to
stock market crashes in the second; the
third section defines crash options; the
fourth section presents the hedge
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portfolio and the pricing formula in the
case of a perfect, continuous Gaussian
market used as a benchmark and in an
extreme value framework considering the
appropriate weight of extremes. The fifth
section presents a study based on
simulations to show how crash option
can be used in portfolio management to
get insurance against market crashes.
Results are given for both the US and
European stock markets. The final
section concludes and discusses practical
issues related to the trading of crash
options.

Extreme returns on the US stock
market

This section studies the statistical
behaviour of extreme returns using
extreme value theory. Empirical results
about their distribution are then
exploited to characterise the US stock
market.

Extreme value theory

Changes in the value of the position are
measured by the returns on a regular
basis. The basic return observed on the
time-interval [t — 1, ¢] of length fis
denoted by 1, (f). Let us call F; the
cumulative distribution function of
returns. [t can take values in the interval
(I, u). For example, for a variable
distributed as the normal, ] = —o and
u= -+ Let n(f), n(f), ..., ri{f) be the
returns observed over T intervals [0, 1],
1, 2], 12 3], .., [T—2, T—1], [T—1,
T). The extreme return denoted by
Z(f) corresponds to the minimum of
the T random variables. The process of
selection of extremes is illustrated in
Figure 1. The distribution of the
minimum denoted by F, is given

by

Fup(z) = 1=[1 = F;2]" (D
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Figure 1 Selection of extreme returns. This figure plots the history of the daily returns in the S&P500 index
over the period January 1998-December 1999 containing around 500 observations. Minimal retums (marked
by a circle) and maximal returns (marked by a square) are selected over non-overlapping quarters Q1, Q2, Q3
and Q4 every year. The example corresponds to the following parameters’ value: f = 1 and 7 = 63. From the
500 observations of daily returns, eight observations of extreme returns are obtained. Extreme value theory is
mainly concerned with the statistical properties of the extreme observations of the random process.

In practice, the distribution of returns is
not precisely known and, therefore, if
this distribution is not known, neither is
the exact distribution of the extremes.
From Equation (1), it can also be
concluded that the limiting distribution
of Z:(f) is degenerate. Then, for
practical and theoretical purposes, the
asymptotic behaviour of the extremes is
studied. To find a limiting distribution of
interest, the maximum variable Z;(f) is
reduced with a (positive) scale parameter
a{f) and a location parameter B(f)
such that the distribution standardised
extremes [Z(f) — Br(H/a{f) 1s
non-degenerate. Gnedenko (1943)
proves the so-called extreme value theorem,
which specifies the form of the

limiting distribution F as the length of
the period over which extremes are
selected (the parameter T tends to
infinity. Three possible types of limiting
extreme value distributions can be
reached:

— The Gumbel distribution:
Fyz) =1 —exp(—e) for zeR (2)

— The Fréchet distribution:

Lo/ Texp(—(—2)7) for z<0
FAz) <] for z=0
(1>0)
)
— The Weibull distribution:
0 for z< ()
Fo(z) = <1 —exp(—z ")

for z=0(1<0) (4)

The three types of extreme value
distribution are represented in
Figure 2.

The tail of the distribution F, is
either declining exponentially (Gumbel),
or by a power (Fréchet) or remains finite
(Weibull). For the first and third cases, all
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Figure 2 The Fréchet, Gumbel and Weibull extreme value distributions. This figure represents the three types
of extreme value distribution that can be distinguished according to the tail index value r: the Fréchet
distribution (7 < 0), the Gumbel distribution (r = 0) and the Weibull distribution (7> 0). The distribution for
extreme returns is a Fréchet if the distribution of returns is fat-tailed, a Gumbel if the distribution of returns is
thin-tailed, and a Weibull distribution if the distribution of returns has no tail (the return and therefore the
extreme return are bounded). The tail of the Fréchet distribution (< 0) declines slowly at a power rate. The
tait of the Gumbel distribution {7 = 0) declines rapidly at an exponential rate. The Weibull distribution {r> 0)
has no tail as there are no observations of returns (nor therefore extreme returns) beyond a certain point. The
distributions represented are standardised extreme value distributions (e, = 1, B, = 0) with tail index values
equal to —0.8 for the Fréchet case, 0 for the Gumbel case and 0.4 for the Weibull case.

moments of the distribution of r(f) are
well-defined. For the second case, the
shape parameter [ reflects the weight of
the tail of the distribution of the basic
variable #(f): the lower I, the fatter the
distribution of #(f). The shape parameter
corresponds to the maximal order
moment: the moments of order greater
than [ are infinite and the moments of
order less than [ are finite: the
distribution of r(f) is fat-tailed (Gumbel,
1958: 266). For example, if [ is greater
than unity, then the mean of the
distribution exists; if [ is greater than
two, then the variance is finite; if [ is
greater than three, then the skewness is
well defined, and so forth. The shape
parameter is an intrinsic parameter of the
process of returns and does not depend
on the number of returns n from which
the maximal return is selected.

Jenkinson (1955) proposes a
generalised formula (5) which groups the
three types distinguished by Gnedenko
(1943):

Fyz) = 1—exp [~ (1+,2)"]

<for z<7'if r<0
for z>7" if 7>0 (5)

The parameter T, called the tail index, is
related to the shape parameter ! by

7= —1/1. The tail index determines the
type of distribution: 7<<0 corresponds to
a Fréchet distribution, 7> 0 to a Weibull
distribution, and the intermediate case

(7 = 0) corresponds to a Gumbel
distribution. The Gumbel distribution can
be regarded as a transitional limiting form
between the Fréchet and the Weibull
distributions as (1 — 72)"/7 is interpreted as
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Figure 3 Determination of the type of asymptotic distribution. This figure represents the adjustment of the
Gumbel extreme value distribution to observed yearly minimal returns. If minimal returns are drawn from a
Gumbel distribution, observed extreme returns should lie on a straight line. Concavity suggests a Fréchet

distribution.

e ". For small values of 7 (or large values
of l) the Fréchet and Weibull distributions
are very close to the Gumbel distribution.

Gnedenko (1943) gives necessary and
sufficient conditions for a particular
distribution to belong to one of the
three types. For example, the normal and
log-normal distributions commonly used
in finance lead to the Gumbel
distribution for the extremes. The
Student-¢ distribution considered by
Praetz (1972) obeys the Fréchet
distribution with a shape parameter [
equal to its degree of freedom (I=2).
Stable Paretian laws introduced by
Mandelbrot (1963) also lead to a Fréchet
distribution with a shape parameter [
equal to their characteristic exponent
0<1<2).

The extreme value theorem has been
extended to time series: Berman (1964)
shows that the same result stands if the
variables are correlated (the sum of
squared correlation coefficients remaining
finite); Leadbetter et al. (1983) consider

various processes based on the normal
distribution: auto-regressive processes
with normal disturbances, discrete
mixtures of normal distributions as
studied in Kon (1984) and mixed
diffusion jump processes as advanced by
Press (1967) all have thin tails so that
they lead to a Gumbel distribution for
the extremes; and De Haan et al. (1989)
show that if n(f) follows the ARCH
process introduced by Engle (1982), then
the maximum has a Fréchet distribution.

Statistical methods of estimation
Estimated empirically, the asymptotic
distribution of extremes contains three
parameters only: 7, a and B, Two
parametric techniques are commonly
used: the regression method, which
provides a graphical method for
determining the type of asymptotic
distribution, and the maximum-likelihood
method, which provides efficient
estimates (Figure 3).
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Figure 4 Adjustment of the Fréchet distribution. This figure represents the adjustment of the Fréchet extreme
value distribution to observed yearly minimal returns. If minimal returns are drawn from a Fréchet distribution,

observed extreme returns should lie on a straight line.

(a) The regression method

The regression method described in
Gumbel (1958: 226, 260, 296) is based
on order statistics of the extremes Z.
The sequence of observed minima
(Z,)=1.~ 15 arranged in increasing order
to get an order statistic (Zr),— n for
which: Z1, =2, =...=< Z}\ For each
value of i, the frequency F,{(Z7) is a
random variable lying between zero and
one. The distribution of these variables is
independent of the variable Z;. The
mean of the ith frequency E[F, {Z}))] is
equal to i/(N+ 1). The method
compares the ordered extreme
observation F,{(Z7;) with its theoretical
counterpart (N+ 1 —#)/(N+1). This is
done by estimating the reduced Equation
(6) obtained by twice taking the
logarithm of both quantities:

e ()

1 1 , a
= ;lnaT — InT[— 1'( =B +TT>}
+ (bn,[ (6)

For the intermediate Gumbel case
(T =0), the following regression is run:

o

By, )

ar

Consistent parameter estimates are
obtained for both non-linear Equations
(6) and (7) by minimising the sum of
squared residuals. A graphical test derived
by Jenkinson (1955) allows the
establishment of a preference for one of
the three types of extreme value
distribution (see also Gumbel, 1958:
178). The theoretical values
—In{—In[(N+1—)/(N+ 1)]} are
plotted against the observations of
ordered extremes Z7; on probability
paper. The curvature of the resulting
graph is related to the type of
distribution: for a Gumbel distribution, a
straight line should be obtained (Figure
4). The Fréchet distribution leads to a
concave curve, while the Weibull
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Tabie 1

Estimation of the asymptotic distribution of minimal daily returns observed over a year

Note: This table gives parameters’ estimates of the distributions of minimal returns based on the regression
method (Panel A) and the maximum likelihood method (Panel B). Minimal returns correspond to the lowest
daily return reached over a year containing on average 278 trading days over the period 1885-1999.
Estimates of the three parameters [a/{f), B{f) and 1] are reported for the constrained Gumbel distribution

(v = 0) and for the unconstrained Fréchet distribution.

distribution gives a convex curve.
Gumbel (1958: 215) gives the confidence
bounds for the graphs.

(b) The maximum-likelihood method

The maximum-likelihood method gives
parameter estimators which are
unbiased, asymptotically normal and of
minimum variance. Parameters’ estimates
are obtained by solving a set of
non-linear equations given by the
first-order conditions of the
maximisation problem (see Tiago de
Oliveira, 1973). Regression estimates
are used as initial values in the
algorithm. A likelihood ratio test will
be computed to discriminate among
the three types of asymptotic
distributions of extremes.

Empirical results for the US stock
market

An extended version of Schwerts (1990)
database of returns from 1885 to 1999 is
used here. Returns reflect the daily
change in the value of an index
composed of the most traded stocks on
the New York Stock Exchange. Basic
returns r,(f) are computed on a daily
basis as percentage logarithmic price
change (adjusted for dividends and any
change in the capital structure of the
firms). Minima Z{f) are then defined as

the largest daily rise in the stock market
and the largest daily fall over a year
(containing on average 278 trading days).

Estimates of the scale parameter ar(f)
the location parameter B{(f) and the tail
index T for the distributions of minimal
daily returns observed over a year can be
found in Table 1, based on the regression
method (Panel A) and the
maximum-likelihood method (Panel B).

Minimal returns belong to the domain
of attraction of the Fréchet distribution
as the tail index is significantly negative:
—0.337 for minima with an associated
t-test equal to -4.57. A likelihood ratio
test between the Fréchet case and the
Gumbel case leads to a firm rejection of
the Gumbel distribution (and, a fortiori, a
rejection of the Weibull distribution).
The likelihood value is equal to —240.09
for the Gumbel distribution and —225.08
for the Fréchet distribution The
likelihood ratio test (LR) between the
two models is asymptotically distributed
as a chi-square with one degree of
freedom (difference between the number
of parameters of each model). The test
value is equal to 30.23 with p values less
than 107°.

The goodness of fit of the extreme
value distribution can be studied by
comparing the empirical frequency of
extreme returns with the estimated
Fréchet frequency. The empirical
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Table 2 Probability of occurrence of minimal returns

Probebity of & minimal dully retum lower then r{)

o 100.00 100.00 100.00
-1 : 100.00 99.98 100.00
-2 ‘ 84.34 84.12 9976
-3 o 51.30 52,68 29.83
-4 . 31.30 31.79 0.83
-5 21.33 20.08 0.01
-10 - 2:60 3.3 0.00
-15 0.86 1.41 0.00
-20 0.86 0.68 0.00
-25 0.00 0.38 0.00

Note: This table gives the probability of a minimal daily return being lower than a given level. A minimal return
is defined as the lowest daily return on a portfolio of the most traded stocks on the New York Stock
Exchange observed over one trading year. The database contains 115 years covering the period 1885-1999.
Three different methods are used to compute the probability: (1) the historical distribution of observed minimai
returns; (2) the estimated asymptotic Fréchet extreme value distribution of minimal returns; and (3) the exact
extreme value distribution of minimal returns implied by the estimated Gaussian distribution of returns.

frequency of minimal returns is given in
Table 2. For example, 51.30 per cent of
minimal daily returns observed over a
year are under the —3 per cent level and
21.33 per cent under —5 per cent. Such
results are close to the one given by the
Fréchet distribution which predicts 52.68
per cent of minimal returns under the
—3 per cent level and 20.08 per cent
under —5 per cent. Such figures differ
dramatically from the one predicted by
the distribution of extreme returns
obtained from a log-normal distribution
for daily returns. The results show that
the distribution of extremes based on
normality fits reality badly; it leads
especially to underestimates of the weight
of large extreme returns. For example,
the probability of a minimal return lower
than —5 per cent is 0.01 per cent
compared with an empirical frequency of
21.10 per cent.

Characteristics of extreme returns on
the US stock market

An economic implication of these results
concerns the type of market in which
assets are traded by investors. Fama

(1963) and McCulloch (1978) discuss
two extreme cases: the discontinuous
stable Paretian hypothesis and the
continuous Gaussian hypothesis. In a
stable Paretian market, a large price
change over a long time-interval is, most
of the time, the result of one or a few
very large price changes that took place
during smaller subintervals, and the price
path contains discontinuities. In a
Gaussian market, a large price change is
more likely to be the result of many
very small price changes, and the price
path is continuous. This study of the US
market over a long period rejects both
hypotheses (the tail index is significantly
higher than —0.5 and different from 0)
and suggests an intermediate situation
(the tail index is between —0.5 and 0).
The market under study — a Fréchet
market — presents more extremes and so
more risk for investors than a Gaussian
market, but fewer extremes and so less
risk than a stable Paretian market. The
market price may or may not exhibit
discontinuities according to the process
governing returns. Such a market
characteristic has a direct economic
implication for investors following
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stop-loss, arbitrage or portfolio insurance

strategies: in the case of continuity, these
strategies may be as reliable as in a
Gaussian market, although in practice
larger price movements may occur on a
short time-interval, and in the case of
discontinuity, these strategies may be
more efficient than in a stable Paretian
market, as large price movements occur
less often. In a Fréchet market, investors
may have to use specific instruments,
such as crash options proposed in this
paper, to protect their positions during
periods of high volatility. The type of
market identified by Longin (1996a) is
indeed a strong motivation for the
introduction of these new financial
instruments. Note that a similar
conclusion (a Fréchet market) has been
reached by Boulier et al. (1998) for other
financial markets.

Stock market crashes

This section focuses on the crashes in
the US stock market. A crash certainly
corresponds to a minimal return over a
given period, but the reverse is not
true: a minimal return is not
necessarily a crash. First, the definition
of a crash is discussed and two
classifications of minimal returns
between crashes and non-crashes
observations are proposed.
Heterogeneity in the distribution of the
extremes is then tested as a possible
explanation for the classification
between the crashes and the
non-crashes. In other words, could the
crashes and the non-crashes be drawn
from the same unconditional
distribution of extremes?

Classifications of minima between
crashes and non-crashes

Some stock market events have been
described as crashes by financial scholars

and by professionals. In the previous
section, the extreme movements of the
stock market defined as minimal returns
over a calendar year were studied. If a
crash can certainly be characterised as a
minimal return over a given period, the
reverse is not true: a minimal return is not
necessarily a crash. For instance, during
booming periods, yearly negative extreme
returns are rather small in absolute value:
over the year 1985, the largest decline of
the US stock market was only —1.47 per
cent. This observation is surely not a
crash. This raises a natural question: how
to define a crash?

Goldsmith (1982) gives the following
definition of a financial crisis: ‘a sharp,
brief, ultracycled deterioration of all or
most of a group of financial indicators —
short term interest rates, asset (stock, real
estate and land) prices, commercial
insolvencies and failures of financial
institutions’. This study focuses only on
one part of the financial crisis: stock
market crashes. They are characterised by
a sharp, brief decline in stock market
prices. This leads us to a quantitative
classification based on the size of the
extreme returns.

(a) Quantitative classification

In the quantitative classification, an
observation of minimal return is a crash
if the minimal return falls below a given
level. The level can be fixed arbitrarily
or determined using a statistical measure.
In the empirical study, I used a threshold
of 4 standard deviations of daily returns
to classify the crashes. The quantitative
classification contains 31 observations of
crashes (over 115 minimal returns for the
period 1885-1999).

This classification insists on the
quantitative aspect of the phenomenon.
A crash corresponds surely to a sharp,
brief decline of the market, but the
reverse appears to be false. In 1934, for
example, the largest decline was —8.15
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per cent. This value is the sixth largest
drop in the US stock market over more
than one century. This observation was
not recognised as a crash by market
participants, however. Apart from the
quantitative characteristics, the crashes
also present other aspects (psychological
aspects such as panic effects, or market
microstructure aspects such as the lack of
liquidity, for example) which do not
appear in the data. Aware of the
shortcomings of his definition, Goldsmith
added the following: crashes are ‘hard to
define but recognisable when
encountered’. This leads us to a
qualitative classification based on market
participants’ opinion.

(b) Qualitative classification

In the qualitative classification, an
observation of minimal return is a crash
if it i1s recognised by market participants
(investors, brokers, regulators, etc.) as a
crash. Consider the comments reported
in the New York Times® on the day
following the drop in the stock market.
If the words crash or to crash appear in
the newspaper, the observation of the
minimal return is asterisked as a crash.
According to this procedure, there are 14
observations of crashes over 115
observations of minimal returns. The set
of crashes can be extended if we take
into account synonyms for the word
crash. In a less restrictive classification, an
observation is called a crash if one of the
words crash, to crash, disaster, collapse, to
collapse, to tumble and to plunge appear in
the articles of the Times. The second
qualitative classification contains 33
observations of crashes (over 115
minimal returns for the period
1885-1999).

The quantitative and qualitative
classifications for the minimal returns are
quite different. Although the two sets of
crashes contain almost the same number
of observations (33 and 31), the overlap

R
Portfolio insurance and market crashes

is not perfect: there are only 16
observations of crashes common to the
two classifications.

Test of homogeneity in the distribution
of extremes

The purpose of this study is to test
whether the classification of minima
between crashes and non-crashes can be
explained by heterogeneity in the
distribution of the extremes. Could both
types of minima be drawn from the same
unconditional distribution of extremes or
not, or, stated differently, if there is a
source of heterogeneity due to crashes?

To check whether there is
heterogeneity due to the crashes in the
distribution of extremes, a regression
technique for censored data is used
[suggested by Kinnison (1985)]. The
regression method can be used for any
kind of censored data or any pattern of
missing data if the total sample size is
known and if the known values can be
assigned ranks within the total sample.
The method can be described in three
steps. First, separate the whole sample of
extremes into two subsamples according
to our classifications of extremes. For
example, the sample of the 115 minimal
returns is divided into a subsample
containing 31 observations of crashes and
a subsample containing 84 observations
of non-crashes according to the
quantitative classification. Secondly,
estimate Equation (7) twice: for the
values of i corresponding to the first
sample only and for the values of i
corresponding to the second sample only.
Two sets of the parameter estimates of
the unconditional distribution of the
minimal returns are obtained: one from
the sample of crashes noted 7°, @y and
B¢ and another from the sample of
non-crashes noted 7 “or a™“, and BY“.
Thirdly, compare these two sets of
estimates. Qur null hypothesis
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Table 3 Estimation of the asymptotic distribution of minimal daily retums corresponding to crashes
and non-crashes

i : ; .

o

Note: This table gives parameters’ estimates of the distributions of minimal returns corresponding to crashes

and to non-crashes according to the quantitative classification (Panel A) and the qualitative classification

(Panel B).

corresponds to the homogeneity of the
distribution of the minima and can be
stated as follows: 75 = ¢, af = al¢
and Bf = BYC. In this paper, a test for
each parameter is carried out separately.
The statistic of the test is described in
Kendall and Stuart (1967). If the
observations of both subsamples are
drawn from the same distribution, the
null hypothesis should not be rejected. A
usual issue with this type of test 1s the
power of the test. Is the null hypothesis
rejected when the null hypothesis is
indeed false? This problem can be
particularly important if one of the two
subsamples contains very few
observations. In this case, the three
parameters of the distribution would be
badly estimated (that is to say with high
standard errors), and finally we would
not be able to reject the hypothesis of
the coefficients obtained from both
subsamples. We would misleadingly
conclude that the distribution of the
extremes is homogeneous.

A rejection of the hypothesis of
homogeneity would suggest that the
characteristics of the process describing
the daily returns were too far from the
assumptions of the extreme value
theorem. Series of normalising
coefficients (@ and 1) would not exist,
and the extremes would not be
asymptotically drawn from an
unconditional distribution.

Empirical results

Our empirical results are presented in
Table 3 for the quantitative classification
(Panel A) and for the qualitative
classification (Panel B).

For the two classifications, the results
do not lead to a rejection of the null
hypothesis of the homogeneity of the
distribution of the extremes. No
significant differences are found between
the parameters estimated from the sample
of the crashes and from the sample of
the other minima. For example, for the
quantitative classification of the minima,
the tail index T is equal to —0.421 for
the crashes and to —0.361 for the other
negative extremes. The standard errors
for these estimates are respectively equal
to 0.101 and 0.034. They are naturally
higher than that obtained from the
whole sample (0.013) since fewer
observations are used for the estimation.
The test of the equality of the coefficient
T for the two subsamples leads to a ¢
ratio equal to 0.093 with an associated p
value of 0.930. The hypothesis of
equality of the two parameters is far
from being rejected. All estimates are
indeed very close, and the hypothesis of
homogeneity could not be rejected even
if the parameters were better estimated.

In sum, the results show that the
distribution of the extremes is
homogeneous. The crashes and
non-crashes are likely to be drawn from
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the same unconditional distribution of
extremes. From a statistical point of view,
no difference between both types of
minima is found. No heterogeneity
which could have explained the
classifications of minima was found. The
conclusion is that crashes are simply bad
draws and not special or abnormal
statistical events.

Definition of crash options

Options are completely defined when the
underlying interest, the payoft function
depending on the strike and the
expiration date, the type of exercise and
the setdement procedure are specified.
These attributes are defined below for
crash options. The use of such
instruments during the crash of October
1987 i1s studied as an example.

Underlying interest

There are, a priori, no conditions to
impose on the choice of the
underlying interest. While this paper
focuses on the equity market,
commodities, foreign exchange and
bond markets may be considered as
well. Crash options could be
indifferently associated with individual
stocks or any portfolios of these assets
combined together. As already noted
by Cox and Rubinstein (1985:
446—-58), however, financial theory
suggests that options written on asset
portfolios are potentially of greater
social usefulness than conventional
options written on single equity
securities. Stock and futures indexes’
such as the S&P100, S&P500, S&P
MidCap indexes, the Nasdaq-100
index, the Major Market index, the
NYSE index, and the Value Line index
in the USA are potential good
candidates. As an example used
throughout the paper, a portfolio

composed of the stocks of the Standard
& Poor’s 500 index is considered. An
investor with a long position will be
sensitive to a large decline in the
S&P500 index price and will protect
his position with a crash option to
limit his extreme downside risk.

Payoff function

The aim of crash options is to protect
a position against a sharp variation in
market prices over a short period of
time. As noted by Kindleberger (1978),
stock market crashes generally occur
over a few days. The period of
reference denoted by f could then
range from a day to a few weeks. As
it is the change in the value of the
underlying interest which matters, we
thus consider percentage price changes
or returns.

As a consequence, the strike is also
defined as a return. The striking return
should be computed in relation to the
volatility of the price of the underlying
interest. For example, S&P500 index
returns present a standard deviation
around 1 per cent in daily units.
Considering a crash option with a daily
frequency to protect a long position in
the S&P500 portfolio, striking returns of
0 per cent, —1 per cent, —2 per cent,
—3 per cent, —4 per cent and —5 per
cent are potential good candidates. A
crash option with a O per cent striking
return annihilates the impact of the
largest daily drop on the portfolio value,
while a crash option with a —3 per cent
striking return limits the impact of the
largest daily drop to —3 per cent (if the
S&P500 index dropped by more than 3
per cent on a single day by the
expiration date). The striking return is
denoted by k.

As the strike is expressed as a rate of
return, it is necessary to define the
notional value associated with crash

Portfolio insurance and market crashes
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options contracts. This represents the
amount of money initially protected by
crash options. The notional value of a
standard contract is denoted by NV.

As the type of event related to crash
options is essentially rare, the time to
expiration of these options should be
long enough that the probability of
such an event is non-negligible. The
time to expiration could range from a
few months to a few years. The time
to expiration is denoted by T and
expressed in the unit of the chosen
frequency f.

The payoff for a crash option issued at
time O with striking return k, notional
value NV, and frequency f expiring at
date T, is defined by

NV Max (k— Z{),0). (8)

Loosely speaking, returns
Habasts,. . o r1— 1,7 Observed over the n
basic time-intervals [0, 1], [1, 2], [2,
3L, .., [T—=2, T—1}, [T—1, T] are
compared with the striking return k. If
there is a time-interval [t — 1, ¢] when
the difference k —r, is positive (that is
to say if the price of the underlying
interest dropped by more than k per
cent during the time-interval [r— 1, #]),
then the owner of the crash option
will receive for sure at expiration date
T a positive amount of money at least
equal to NTV(k—r). The exact amount
of money received at expiration date T
is equal to NV(k— 1), where f is the
lowest return (assumed to be lower
than k) occurring during the basic
time-interval [f"— 1, f]. If none of the
returns #,%,f,. . fr—1,r1- 15 lower than
the striking return k, then the owner
of the crash option receives nothing at
the expiration date.

The payoff of a crash option evolves
with time according to the path
followed by the price of the

underlying interest.

Other features

As for other options, the type of exercise
of crash options may be either European
or American. A third possibility may be
to allow the buyer to cash in sequentially
the sure value instead of awaiting the
expiration date. Unlike European-type
options, investors would receive cash
during periods of high volatility when it
is sometimes badly needed, and, unlike
American-type options, investors would
not have to give up potential gains that
can be obtained until the expiration
date.

Purchasers of crash options would
simply pay the premium at the beginning
of the transaction, and writers would
have to deposit cash and securities with
their broker or the Exchange as collateral
for the writers obligation to buy or sell
the underlying interest. The level of
margin requirement should be related to
the volatility of the underlying interest
and especially be in hne with the
frequency of extreme price movements.”

The trading of crash options may be
easter 1n a discrete-time market, organised
for example after the close of the market
of the underlying interest, than in a
continuous market. The hquidity of the
market for crash options may be better
after the close and then reliable official
closing prices could be used to define the
price change or return.

The settlement procedure for crash
options can copy the procedure for other
options: physical delivery in the case of
an individual stock, and cash payment in
the case of an index.

An eliementary property of

crash options

As options with a cliquet, crash options
contain a sure value and this sure value
increases over the lifetimes of the
options. This result comes from a simple
mathematical property of the extremes:
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these variables are monotone. For
example, the minimum of random
variables decreases with the length of the
period over which it is selected.

Let CO(t, k, NV, f, T) denote the
value at time ¢ of a crash option issued at
time O with striking return k, notional
value NV, frequency f and time to
expiration T. This value can be written
as the sum of two terms

CO(tk, NYET) = ™
NV_Max[k — Z(f), 0]
+ CO{t,Min[k, Z(N], NV f T—t}.
9)

The first term 1s the discounted value
of a bond that pays NV

Max[k — Z,(f),0] at expiration date T
(the money the investor is sure at time
t to receive at expiration date T from
the crash option). The second term is
the value of a new crash option issued
at time ¢t with notional value NV,
frequency f, time to expiration T — ¢
and an ‘updated’ striking return
Minlk, Z ()]

Equation (9) allows us to determine
the optimal time to exercise an
American crash option: (e*" 7 —1) NV
Max[k — Z(f),0]= CO{,Minlk,Z(f)],
NV, T—t}, a condition expressing that
the crash option should be exercised
when the interests earned on the sure
value invested in a risk-free bond are
higher than the expected future gains
that could be made from the crash
option. This condition should be
verified after a large negative return,
making the sure value high and the
price of the new crash option low.

An example

Consider an investor with a portfolio
composed of stocks of the S&P500
index (long position) during October
1987. The initial value of his portfolio

SR

Portfolio insurance and market crashes

is $1,000,000. Let us assume that the
investor had the inspired idea of
protecting his portfolio with a crash
option to limit the impact of a
potential stock market crash on his
portfolio value. At the beginning of
October, he bought a crash option
written on the S&P500 index with a
striking return of O per cent, a
notional value of $1,000,000, a daily
frequency and a time to expiration of
one month. This option is aimed at
removing from the performance of the
portfolio the worst daily loss resulting
from the largest daily price decline in
the S&P500 index during October
1987.

During October 1987, percentage
daily returns on the S&P500 portfolio
were as follows: 1.71 (Ist October),
0.23, 0.00, —2.70, —0.21, —1.38,
—0.98, —0.54, 1.66, —2.95, —2.34,
—5.16, —20.46 (19th October), 5.33,
9.10, —3.92, —0.01, —8.28, 2.42,
0.04, 4.93, and 2.87 (30th October) as
represented in Figure 5. On 6th
October, the S&P500 index price
dropped by 2.70 per cent; the owner
of the crash option is then sure to
receive at least $27,000 at the
expiration date. This number is equal
to the difference between the striking
return (0 per cent) and the minimal
return reached on 6th October (—2.70
per cent) times the notional value
($1,000,000). From 6th October on,
the money that he will get for sure
from his crash option will increase in
value only if the market drops during
a single day by more than 2.70 per
cent (the updated striking return). A
few days later, on 14th October, the
price index dropped further, by 2.95
per cent. The sure value of the crash
option is now $29,500 [the difference
between the striking return (0 per
cent) and the minimal return reached
on 14th October (—2.95 per cent)
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Figure 5 Comparison between a put option, a lookback option on the maximum and a crash option: the
case of October 1987. This figure represents the evolution of the S&P500 index in October 1987 and the
payoff of a put option and a crash option written on the index.

times the notional value ($1,000,000)].
Larger negative returns occurring during
the October crash lead to future
increases in the crash option sure value.
During October 1987, the minimum
variable Z,, is equal to the —20.46
per cent reached on 19th October. At
the expiration date, the crash option is
finally worth $204,600. Although the
market dropped by 3.92 per cent and
8.28 per cent (returns lower than the
crash option striking return of 0 per
cent) on 22nd and 26th October,
respectively, this does not increase the
sure value, since these returns are
greater than the updated striking return
of —20.46 per cent, the minimal
return reached by these dates. In this
example, the use of a crash option
removes the impact of the crash
(—20.46 per cent) from the monthly
portfolio performance. The return on

the investment during October 1987 is
improved by around 20 per cent by
using the crash option: during October
1987 the value of the unprotected
portfolio dropped by 21.75 per cent
while the value of the same portfolio
protected by the crash option dropped
by only 1.29 per cent.

Hedge portfolio and pricing
formula of European crash
options in a perfect market
Hedging and pricing are first
considered in the classical case of a
perfect, continuous Gaussian market.
The hypothesis of normality is then
relaxed; a more general pricing formula
using the asymptotic extreme value
distribution is then proposed to take
into account the nght frequency of
extreme returns.

4180
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The classical approach

As stated in Black and Scholes (1973),
the following assumptions are made:
the short-term interest rate is known
and is constant through time, and
denoted r; the price of the underlying
interest follows a random walk in
continuous time with a variance
proportional to the square of the asset
price. The asset price denoted as S is
governed by a geometric Brownian
motion given by

45, _ wdt + ad W, (10)

f

where the drift g and the variance o
are assumed to be constant over time;
the price of the underlying interest
takes into account dividends paid on
the stock (or the stocks included in
the portfolio) and any distributions
related to the change in the capital
structure of the firm(s); there are no
transaction costs of buying or selling
stocks and bonds; investors can borrow
any fraction of the price of a security
to buy or hold it, at the short-term
interest rate; and there are no penalties
for short selling.

The hedge portfolio for a crash option
can be structured as a string of forward
start put options (with random strike
prices). To cover the interval [z, t+ 1],
the investor buys, at time r, NV *777/5,
put options on the underlying interest
with striking price S;{1 + Min[k, Z(f)]}
and maturity f (le expiring at time f+ 1),
whose value is denoted by P{S,

S[1 + Min(k, Z(f))], f}. At time O, a
part of the proceeds from the sale of the
crash option is used to finance a
portfolio used to buy these put options.
From the point of time 0, this portfolio
can be viewed as a contingent claim,
whose value at the expiration date (time
) depends only on the price of the
underlying interest. The value of the
portfolio denoted by V4, is the solution

Portfolio insurance and market crashes

to the Cauchy problem with the partial
differential equation

.

—ji-i-rV,H
W | 1 5 Vi

= s2 4 el I ,
e A (11)

subject to the boundary condition

Vin()) = NVe™ @™
1
5 P{S, S[1 + Min (k Z(f)].f}-

The exact composition of the portfolio
is determined by computing the delta
of the position equal to the partial
derivative of the portfolio value with
respect to the price of the underlying
interest, dV,,/dS. Over the
time-interval [0, ¢, the position is
short in the underlying interest as an
increase in the price of the underlying
interest may decrease the price of put
options to buy at time t” At time f,
the composition of the portfolio is
changed to buy put options. Over the
time-interval [¢, ¢+ 1], the portfolio of
put options is then hedged with a
short position in the underlying interest
and a long position in the risk-free
bond, as given in Black and Scholes
(1973). At ume ¢+ 1, the proceeds of
put options bought at time ¢ are
invested in cash until the time to
expiration of the crash option.

At any time, the composition of the
portfolio replicating the crash option is
given by the sum of the deltas of the n
contingent portfolios

av, +0V2 + oV + +0VT_1 +c9VT’
as aS oS oS oS

and the price of the crash option is equal
to the sum of the values of the n
contingent portfolios

Vi+ Vot Vit ...+ Vs + V. The
price of the crash option can also be
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computed by using Equation (6) of the
final payoft of the crash option

CO0,k,NV,£T) = ¢ ""NVEq,

(Max [k~ Z(),0]}, (13)
where Q,, is the risk-neutral
distribution of the minimal return
observed on the # basic time-intervals [0,
1, 11, 2}, 12, 3], ..., [T—2, T— 1],
[T— 1, T}, each time-interval being of
length f According to Equation (1), this
distribution is related to the nth power
of the risk-neutral distribution of a return
1), Qup- As the price of the underlying
interest follows a Brownian motion, the
latter distribution is a log-normal
distribution with mean ¢’ — 1 and
variance 62”4(6"2{— 1).

The hedging strategy and pricing
method are now illustrated with an
example. As in the example in the
previous section, an investor with a long
position in the S&P500 index during
October 1987 is considered. The initial
value of the portfolio is $1,000,000. At
the beginning of October, the investor
bought a European crash option written
on the S&P500 index with a striking
return of O per cent, a notional value of
$1,000,000, a daily frequency and a time
to expiration of one month. This crash
option annihilates the impact of the
largest daily decline in the index price
on his porttolio value. The time-
evolution of the crash option value and
of the hedge portfolio are given in Table
4. Also given are the value and the
decomposition of the basic portfolios of
the hedge portfolio: the portfolios used
to replicate the crash option over the
period [0, ¢}, whose combined values are
equal to the discounted sure value of the
crash option; the value of the portfolio
of one-day put options used to replicate
the crash option during the period |[f,

t + 1]; and the portfolios used to buy put
options over the remaining period [f+ 1,

SPlE R R R R R e e

T]. In a perfect Gaussian market, the
crash option bought in the beginning of
October 1s worth $19,137.39. It 1s
hedged with a short position in stocks of
—$49,017.68 and a long position in the
risk-free bond of $68,155.06. The crash
option can also be decomposed as a
porttolio of put options worth $3,983.32
(equivalent to a short position in stocks
of —$490,237.69 and a long position in
the risk-free bond of $494,221.01) and
contingent portfolios used to buy put
options in the future worth $15,154.06
(equivalent to a long position in stocks
of $441,220.01 and a short position in
the risk-free bond of —$426,065.94). At
the expiration date, the crash option is
fially worth $204,600.00. By
comparison, a put option and a lookback
option on the maximum issued at the
beginning of October to protect a
portfolio of $1,000,000 would have been
worth at the end of the month,
respectively, $217,630.43 and
$237,050.62. Note that such options
would have been worth almost nothing
at maturity if the market had come back
around its pre-crash level, while a crash
option would not have been influenced
by the post-crash price history as it
contains a cliquet. Because of the crash
of 19th October, 1987, the crash option
finishes deeply in the money."

The extreme value approach

As suggested in the second section, the
distribution of market price changes may
be different from the Gaussian
distribution. In particular, looking at
extreme price changes, the Gumbel type
of extreme value distribution, which is
implied by normality, is strongly rejected
in favour of the Fréchet type consistent
with fat tails. A more general approach
using the asymptotic extreme value
distribution is then proposed to take into
account the right frequency of extreme
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returns, which is of particular importance
for pricing crash options. In this section,
we still assume a perfect, continuous
market. Crash options can be perfectly
hedged and then be priced as if they
existed in a risk-neutral world, as shown
by Harrison and Kreps (1981).

Assuming all risks can be diversified,
the asymptotic value at time 0 of a crash
option with striking return k, notional
value NV, frequency f, and time to
expiration T, 1s given by

CO(O,k,NI/:ﬂ T:) = e‘V'I‘NI/Easympm(ic

Qzr(h)
{Max [k — Z+{(f),0]}, (14)

where Q% is the risk-neutral
asymptotic extreme value distribution of
the minimal returns observed on the #
basic time-intervals [0, 1], [1, 2], [2, 3],
e [T—2, T—1], [T—1, T], each
time-interval being of length f. This
distribution is given by the formula

Q)

el A5

ar(f)

T

for z<

+ B+, (15)

where the parameters ar(f), Br(f) and
T are the risk-adjusted scale and location
parameters and the risk-adjusted tail
index. In order to get a finite price for
the crash option, the distribution of
returns has to belong to the domain of
attraction of the extreme value
distribution with a tail index greater than
minus one.

The extreme value approach includes
the classical approach as a particular case:
the risk-adjusted parameters are given by
ai(f) = arf), Bi(f) = Bi(H) — (wf— )
and 7 = 7= 0."" The risk-neutral
distribution differs from the historical
distribution by the location parameter
value only: the location parameter of the
risk-neutral asymptotic distribution of

Portfolio insurance and market crashes

extremes, B7(f), is simply equal to the
location parameter of the historical
asymptotic distribution of extremes Br(f)
minus the risk premium observed on a
short basic time-interval, uf—1f. The
scale parameter and the tail index are
unaffected by the change in distribution.

As pricing Equation (13) 1s asymptotic,
the time to expiration has to be long
enough that the exact distribution of
extreme returns can be safely replaced by
the asymptotic distribution. Practically, a
Sherman goodness-of-fit test can be used
to assess the convergence of the
asymptotic distribution."

A closed-form solution for the price of
a crash option is

a;* F[T*
- T

L AL
+1,<1"T*‘Bl*—k) }

ar

o

(16)

e TNV { —

where the function I is defined by
T'(x,y) = [{w*"'e™"du, with x>0, and
the function F, is given by Equation (5).

Application to portfolio
management

This section shows how crash options
could be used in portfolio management.
First, investment strategies are described.
Then results based on simulations are
presented.

Description of investment strategies

Three different investment strategies are
considered: a long position, a long
position protected by a put option and a
long position protected by a crash
option. The options are bought at the
beginning of the investment period, and
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their maturity matches the investment
horizon. The put option is taken
at-the-money such that the initial value
of the investment is fully protected
(guarantee of capital). It means that the
position 1s protected against any drop in
the position value over the whole
investment period. The crash option is
taken with a strike of O per cent. A
crash option does not offer a full
protection but only insures the position
value against the largest drop in value on
a single trading period. In the simulation
study, the position is assumed to be
invested in the stock index. The
frequency of the crash option is taken to
be one trading day as a stock market
crash (by definition) occurs on a short
time-period. Four different investment
horizons are considered: 1 month, 1
quarter, 1 semester and 1 year.

The strategies are tested over the
time-period January 1885-December
1999 for the US stock market (Schwert
database) and over the January
1992—January 2001 for the European
stock market (Bloomberg database). Both
databases are representative indexes of the
equity market of each country. For
example, for the European equity
market, as of 31st January, 2001, it
includes the following stocks: ABN
Amro Holding NV, Aegon NV, Alcatel
A, Allianz ag-reg, Astrazeneca plc, AXA,
Banco Bilbao Vizcaya Argenta, Barclays
plc, Bayer ag, BNP Paribas, BP Amoco
plc, British Telecom plc, Banco
Santander Central Hisp, Carrefour SA,
CGNU ple, Credit Suisse group-reg,
Daimlerchrysler ag-reg, Deutsche Bank
ag-reg, Deutsche Telekom ag-reg,
Diageo plc, E.on ag, ENI spa, Ericsson
Im-b shs, France Telecom SA,
Assicurazioni Generali, GlaxoSmithKline
ple, HSBC holdings plc, ING groep n.v,
LOREAL, Lloyds TSB group plc,
Marcom ple, Muenchener Rueckver
ag-reg, Nestle SA-registered, Nokia oyj,

Novartis ag-reg shs, Philips Electronics
NV, Prudential plc, Roche holding
ag-genusss, Royal Bank of Scotland
group, Royal Dutch Petroleum, Shell
Transport & Trading co plc, Siemens ag,
Swiss re-reg, Telecom Italia spa,
Telefonica SA, Total Fina Elf SA, UBS
ag-registered, Vivendi Umversal,
Vodafone group ple, Zurich Financial
Services.

For each market, the longest
time-period is used in order to observe
several stock market crashes. Let us take
the US market for example. For the long
position, the returns are computed over
each non-overlapping periods of the
whole time-period January
1885-December 1999. For example,
considering vyearly investment, the
strategies are tested over 115 years. For
the long position protected either by a
put option or a cash option, the returns
are computed without taking into
account the option price (payoft of the
strategy) and taking into account the
option price (profit and loss of the
strategy). The options’ prices are
obtained using a GARCH(1,1) process to
model returns. By this method, option
prices depend on the level of volatility at
the beginning of each investment
time-period. Note that returns taking
into account the initial option price are
subject to model risk and that returns
not taking into account the initial
options’ prices are independent of the
model used to price the options.

Results from simulations

Results are given in Table 5 for the
US stock market and Table 6 for the
European market. The following basic
statistics are computed: mean, standard
deviation, skewness and kurtosis. The
worst-case scenario and the value at
risk (VaR) at 95 per cent and 99 per
cent are also reproduced. Let us
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Table 5 Basic statistics of the investment strategies for the US stock market

A. Investment horizon: 1 month
: S 2.5 0.50 246
3.09 4.03 4.65
‘3.18 —344 ; 0.52
25.88 47.88 9.22
- 0.00 ~56.78 ~23.68
5.36 0,00 —12.24 =11.07
T S 0.00 =374 ~:4.39
Lo B investmsnt horizon: 1T-querter
236 . 4/62 1.62 4.83
1938 68.01 7.02 891
-0.34 8.34 ~2.65 0.51
811 2297 23.52 10.01
. —45.84 0.00 ~66.62 +38.10
- =80.92 0.00 ~22.07 26,06
=11,50 0.00 ~4.63 ~ B8.24
‘ Gl nenit horizorn: 1 semester
4.74 7.75 4.07 7.97 4.75°
13.02 8.51 9.74 12.53 13.51
=0.66 1.28 =097 ~0.38 =1.06
273 1.73 6.23 3.04 4.56
~61.02° 0.00 ~61.79 ~565.33; ~@87.55
~30.39 0.00 ~23.86 -=22.20 ~48.75
—18.86 0.00 —4,99 -12.78 =18.20
D. Investment horizon: 1 year
9.47 18.13 7.69 13.40 9.50
17.88 12.84 14.37 17.46 18.09
~0.45 0.56 -0.37 ~0.29: ~0.48
0,02 -0.89 1.71 =0.18 0.06
~44.40 0.00 ~53.16 —36.07 ~41.11
=44.40 0.00 -53.16 ~36.07 —-41.11
=18.66 0.00 ~10.80 -14.90 ~29.25

Note: This table gives the basic statistics for three different investment strategies (a long position, a long
position protected with a put option and a long position protected with a crash option) and different
investment horizons (from 1 month to 1 year). For the two insured strategies, both the payoff and the profits
and losses (P&L) are given. Prices for put options and crash options are obtained by simulation by assuming
a GARCH process for returns. The results are obtained for the US equity market over the period 1885-1999.

consider a yearly investment in the US
stock market for example (Panel D of
Table 5). The mean return of a yearly
investment is equal to 9.46 per cent
with a standard deviation of 17.88 per
cent. The worst yearly return observed
over the entire time period January
1885-December 1999 is equal to
—44.40 per cent in year 1932. The
mean return of a yearly investment
protected with a put option is equal to
13.13 per cent (payoft) and 7.69 per
cent (P&L) with a standard deviation
of 12.64 per cent (payoff) and 14.37
(P&L). The worst case return is equal

to O per cent (payoff) and —53.16 per
cent (P&L) in year 1933. The mean
return of a yearly investment protected
with a crash option is equal to 13.39
per cent (payoff) and 9.51 per cent
(P&L) with a standard deviation of
17.45 per cent (payoff) and 18.10
(P&L). The worst case return is equal
to —36.07 per cent (payoff) and
—41.11 per cent (P&L) in year 1932.
A put option and a crash option lead
to different payoff distributions and then
to different risk/return profiles. While a
put option makes the payoff distribution
completely asymmetric, a crash option by
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Table 6 Basic statistics of the investment strategies for

"
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the European stock market

.

Note: This table gives the basic statistics for three different investment strategies (a long position, a long
position protected with a put option and a long position protected with a crash option) and. different
investment horizons (from 1 month to 1 year). For the two insured strategies, both the payoff and the profits
and losses (P&L) are given. Prices for put options and crash options are obtained by simulation by assuming
a GARCH process for returns. The results are obtained for the European equity market over the period

1992-2001.

removing the worst realisation of returns
over a single trading period more or less
translates the payoft distribution to the
right without changing its shape.

Conclusion

This paper focuses on portfolio
management during the most volatile
periods. First, a quantitative
characterisation of stock market crashes
using extreme value theory is proposed.
Then a new type of option that could
enhance the management of financial
assets during periods of high volatility is
introduced. A simulation study is finally
carried out to test investment strategies
using put options and crash options.
Crash options may improve the
performance of portfolio insurance
techniques, which work badly during
periods of market stress. Although a
given framework for the trading of crash
options is suggested, potential users may
have a different opinion concerning the
choice of the underlying interest, the

definition of the payoff, the type of
exercise, the settlement procedure. Crash
options as defined in this paper deal with
the largest fall in the asset price; similar
options may consider the second, the
third, the nth largest falls in asset prices;
combinations of such crash options may
be traded as well. There is also strong
evidence that the process of financial
asset prices 1s heteroscedastic, and this has
a direct influence on the joint
distribution of positive and negative
extreme price changes as explained in
Longin (1993); a package including both
a boom option and a crash option may
then be of some interest for investors.
This paper first deals with the hedging
and pricing of crash options in a perfect,
continuous Gaussian market. The
assumption of normality, however, leads
to an underestimation of the weight of
the distribution tails which are central to
the pricing of such options. Reality may
be better described with a Fréchet
market characterised by large price
movements. An asymptotic pricing
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formula based on extreme value theory is
then derived to take into account the

right amount of extremes.

Further research may consider a
particular feature observed in reality that
is not addressed in this paper: extreme
price movements are usually associated
with discontinuities in the price and
trading processes. For example, the
biggest stock market crashes resulted
from price jumps, while the market was
closed by the Exchange for an
unspecified time. This feature may make
boom and crash options look even more
attractive instruments for buyers as they
complete the market, but also more
difficult to hedge for issuers during
pertods of extreme volatility. Such a
difficulty may be overcome with the
special institutional arrangement proposed
below.

As crash options appear to have
certain similarities to insurance products,
the writing of such contracts should be
left to big financial institutions. A special
role may also be given to the Central
Bank, which may act as a reinsurance
company for these financial institutions
acting as insurance companies. Similarly
to the market for PCS Catastrophe
Insurance Options organised by the
Chicago Board of Trade (1995), financial
institutions may build crash option
spreads. For example, a financial
institution writing crash options for a
customer with a striking return of —3
per cent could limit its exposure to the
very large stock market crashes like 1929
and 1987 by buying at the same time a
crash option with a striking return of
—10 per cent from the Central Bank
taking the ultimate risk. As the hedge
portfolio composed of the underlying
interest and the risk-free bond may
poortly replicate boom and crash options
during the most volatile periods, such an
institutional arrangement may help to
solve the hedging problem. Note that

Portfolio insurance and market crashes

such an activity of the Central Bank may
rationalise its role of lender of last resort,
sometimes undertaken during stock
market crashes. This paper would then
provide the market price that the Central
Bank should charge for such a service.
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Notes

1 The stock market crash of October 1987 also
highlighted the importance of transaction costs as
explained by Rubinstein (1988) and the functioning
of financial markets as emphasised by the US
Commodity Futures Trading Commission report
(1987: 55-61).

2 The Brady report (1988) partly blames programme
trading (portfolio insurance and index arbitrage) for
the stock market crash of October 1987.

3 See the Wall Street Journal (17th October, 1988).

4 Similarly, boom options could be introduced to
protect the value of a short position against a sharp,
large rise in market prices (see Longin, 1996b).

5 See Goldman et al. (1979) and Conze and
Viswanathan (1991) for a presentation of lookback
options and their pricing.

6 The New York Times is the only daily newspaper
which entirely covers the period 1885-1999.

7 A futures index may be preferred to a stock index
because of the problems in the stock market during
highly volatile periods (lack of liquidity and
informationless prices resulting from trading halts in
particular stocks and the difficulty of getting on-time
stock prices).

8 See Longin (1995) for a method based on extreme
price movements to set margin levels in derivative
markets.

9 An increase in S leads to an increase in the
probability of a higher striking price because of a
higher value of Min [k, Z/(f)).

10 Note that, in the classical framework, it would be

optimal to exercise an American crash option just
before the crash of 19th October, 1987! As shown
in Table 3, after the large price decrease on 16th
October, it is more profitable to invest the sure
value of the crash option in a risk-free bond than to
hold the crash option expecting further gains. The
reason is that in a Gaussian market, a price decrease
larger than the one observed on 16th October
(—5.16 per cent) is very unlikely.

r
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11 Such an assertion comes directly from the formulae

relating the parameters of the asymptotic extreme
value distribution to the parameters of the basic
process as given in Leadbetter et al. (1983: 20-1).

12 Longin (1996) finds that the asymptotic distribution
of extreme returns selected over a period longer
than one semester describes very well the behaviour
of observed extreme returns. The longer the time to
expiration of boom options, the more accurate the
asymptotic pricing formula. Numerical values show
that the pricing error is small: for example, in the
case of normality, the price of a boom option with a
striking return of 0 per cent and a maturity of one
year is $28,425.49 using the exact distribution of
maximal returns and $28,805.29 using the
asymptotic Gumbel distribution, a percentage
difference around 1 per cent. Boom options with a
short maturity may be difficult to price with great
precision. The trading of such options, however,
would be likely to be small, as investors may roll
over their positions as time goes on.
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