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Abstract

This article presents an application of extreme value theory to compute the value at

risk of a market position. In statistics, extremes of a random process refer to the lowest

observation (the minimum) and to the highest observation (the maximum) over a given

time-period. Extreme value theory gives some interesting results about the distribution of

extreme returns. In particular, the limiting distribution of extreme returns observed over

a long time-period is largely independent of the distribution of returns itself. In ®nancial

markets, extreme price movements correspond to market corrections during ordinary

periods, and also to stock market crashes, bond market collapses or foreign exchange

crises during extraordinary periods. An approach based on extreme values to compute

the VaR thus covers market conditions ranging from the usual environment considered

by the existing VaR methods to the ®nancial crises which are the focus of stress testing.

Univariate extreme value theory is used to compute the VaR of a fully aggregated po-

sition while multivariate extreme value theory is used to compute the VaR of a position

decomposed on risk factors. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The contribution of this article is to develop a new approach to VaR: the
extreme value approach. As explained in Longin (1995), the computation of
capital requirement for ®nancial institutions should be considered as an ex-
treme value problem. The focus of this new approach is on the extreme events
in ®nancial markets. Extraordinary events such as the stock market crash of
October 1987, the breakdown of the European Monetary System in September
1992, the turmoil in the bond market in February 1994 and the recent crisis in
emerging markets are a central issue in ®nance and particularly in risk man-
agement and ®nancial regulation. The performance of a ®nancial institution
over a year is often the result of a few exceptional trading days as most of the
other days contribute only marginally to the bottom line. Regulators are also
interested in market conditions during a crisis because they are concerned with
the protection of the ®nancial system against catastrophic events which can be
a source of systemic risk. From a regulatory point of view, the capital put aside
by a bank has to cover the largest losses such that it can stay in business even
after a great market shock.

In statistics, extremes of a random process refer to the lowest observation
(the minimum) and to the highest observation (the maximum) over a given
time-period. In ®nancial markets, extreme price movements correspond to
market corrections during ordinary periods, and also to stock market crashes,
bond market collapses or foreign exchange crises during extraordinary periods.
Extreme price movements can thus be observed during usual periods corre-
sponding to the normal functioning of ®nancial markets and during highly
volatile periods corresponding to ®nancial crises. An approach based on ex-
treme values then covers market conditions ranging from the usual environ-
ment considered by the existing VaR methods to the ®nancial crises which are
the focus of stress testing. Although the link between VaR and extremes has
been established for a long time, none of the existing methods could deal
properly with the modeling of distribution tails.

To implement the extreme value approach in practice, a parametric method
based on ``extreme value theory'' is developed to compute the VaR of a po-
sition. It considers the distribution of extreme returns instead of the distribu-
tion of all returns. Extreme value theory gives some interesting results about
the statistical distribution of extreme returns. In particular, the limiting dis-
tribution of extreme returns observed over a long time-period is largely inde-
pendent of the distribution of returns itself.

Two cases are considered to compute the VaR of a market position: a fully
aggregated market position and a market position decomposed on risk factors.
The former case may be used for positions with few assets and a stable com-
position and the latter case for complex positions with many assets and a time-
changing composition. The case of a fully aggregated market position is treated
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with the asymptotic univariate distribution of extreme returns while the case of
a market position decomposed on risk factors involves the asymptotic multi-
variate distribution of extreme returns. Univariate extreme value theory deals
with the issue of tail modeling while multivariate extreme value theory ad-
dresses the issue of correlation or risk-aggregation of assets from many dif-
ferent markets (such as ®xed-income, currency, equity and commodity
markets) during extreme market conditions.

The ®rst part of this article recalls the basic results of extreme value theory.
The second part presents the extreme value method for computing the VaR of
a market position. The third part illustrates the method by estimating the VaR
and associated capital requirement for various positions in equity markets.

2. Extreme value theory

This section brie¯y discusses the statistical behavior of univariate and
multivariate extremes. Both exact and asymptotic results pertaining to the
distribution of extremes are presented.

2.1. The univariate distribution of extreme returns 1

Changes in the value of the position are measured by the logarithmic returns
on a regular basis. The basic return observed on the time-interval [t ) 1, t] of
length f is denoted by Rt. Let us call FR the cumulative distribution function of
R. It can take values in the interval (l, u). For example, for a variable dis-
tributed as the normal, one gets: l � ÿ1 and u � �1. Let R1;R2; . . . ;Rn be
the returns observed over n basic time-intervals [0, 1], [1, 2], [2, 3],. . ., [T)2,
T)1], [T)1, T]. For a given return frequency f, the two parameters T and n are
linked by the relation T� nf. Extremes are de®ned as the minimum and the
maximum of the n random variables R1;R2; . . . ;Rn. Let Zn denote the minimum
observed over n trading intervals: Zn �Min�R1;R2; . . . ;Rn�. 2 Assuming that

1 The results of the basic theorem for independent and identically distributed (i.i.d.) variables can

be found in Gnedenko (1943). Galambos (1978) gives a rigorous account of the probability aspects

of extreme value theory. Gumbel (1958) gives the details of statistical estimation procedures and

many illustrative examples in science and engineering. Applications of extreme value theory both in

insurance and ®nance can be found in Embrechts et al. (1997) and Reiss and Thomas (1997).

Leadbetter et al. (1983) give advanced results for conditional processes.
2 The remainder of the article presents theoretical results for the minimum only, since the results

for the maximum can be directly deduced from those of the minimum by transforming the random

variable R into )R, by which minimum becomes maximum and vice versa as shown by the

following relation: Min�R1;R2; . . . ;Rn� � ÿMax�ÿR1;ÿR2; . . . ;ÿRn�:
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returns Rt are independent and drawn from the same distribution FR, the exact
distribution of the minimal return, denoted by FZn , is given by

FZn�z� � 1ÿ 1� ÿ FR�z��n: �1�

The probability of observing a minimal return above a given threshold is de-
noted by pext. This probability implicitly depends on the number of basic re-
turns n from which the minimal return is selected (to emphasize the dependence
of pext on the variable n, the notation pext(n) is sometimes used in this article).
The probability of observing a return above the same threshold over one
trading period is denoted by p. From Eq. (1), the two probabilities, pext and p,
are related by the equation: pext � pn.

In practice, the distribution of returns is not precisely known and, therefore,
if this distribution is not known, neither is the exact distribution of minimal
returns. From Eq. (1), it can also be concluded that the limiting distribution of
Zn obtained by letting n tend to in®nity is degenerate: it is null for z less than
the lower bound l, and equal to one for z greater than l.

To ®nd a limiting distribution of interest (that is to say a non-degenerate
distribution), the minimum Zn is reduced with a scale parameter an (assumed to
be positive) and a location parameter bn such that the distribution of the
standardized minimum �Zn ÿ bn�=an is non-degenerate. The so-called extreme
value theorem speci®es the form of the limiting distribution as the length of the
time-period over which the minimum is selected (the variables n or T for a
given frequency f ) tends to in®nity. The limiting distribution of the minimal
return, denoted by FZ , is given by

FZ�z� � 1ÿ exp
�
ÿ �1� s z�1=s

�
�2�

for z < ÿ1=s if s < 0 and for z > ÿ1=s if s > 0. The parameter s, called the tail
index, models the distribution tail. Feller (1971, p. 279) shows that the tail
index value is independent of the frequency f (in other words, the tail is stable
under time-aggregation). According to the tail index value, three types of ex-
treme value distribution are distinguished: the Fr�echet distribution (s < 0), the
Gumbel distribution (s � 0) and the Weibull distribution (s > 0).

The Fr�echet distribution is obtained for fat-tailed distributions of returns
such as the Student and stable Paretian distributions. The fatness of the tail is
directly related to the tail index s. More precisely, the shape parameter k (equal
to ÿ1=s) represents the maximal order of ®nite moments. For example, if k is
greater than one, then the mean of the distribution exists; if k is greater than
two, then the variance is ®nite; if k is greater than three, then the skewness is
well-de®ned, and so forth. The shape parameter is an intrinsic parameter of the
distribution of returns and does not depend on the number of returns n from
which the minimal return is selected. The shape parameter corresponds to the
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number of degrees of freedom of a Student distribution and to the charac-
teristic exponent of a stable Paretian distribution.

The Gumbel distribution is reached for thin-tailed distributions such as the
normal or log-normal distributions. The Gumbel distribution can be regarded
as a transitional limiting form between the Fr�echet and the Weibull distribu-
tions as �1� s z�1=s is interpreted as ez. For small values of s the Fr�echet and
Weibull distributions are very close to the Gumbel distribution.

Finally, the Weibull distribution is obtained when the distribution of returns
has no tail (we cannot observe any observations beyond a given threshold
de®ned by the end point of the distribution).

These theoretical results show the generality of the extreme value theorem:
all the mentioned distributions of returns lead to the same form of distribution
for the extreme return, the extreme value distributions obtained from di�erent
distributions of returns being di�erentiated only by the value of the scale and
location parameters and tail index.

The extreme value theorem has been extended to conditional processes. For
processes whose dependence structure is not ``too strong'', the same limiting
extreme-value distribution FZ given by Eq. (2) is obtained (see Leadbetter et al.,
1983, ch. 3). Considering the joint distribution of variables of the process, the
following mixing condition (3) gives a precise meaning to the degree of de-
pendence

lim
l!�1

jFi1;i2;...;ip ;j1;j1;...;jq�xi1 ; xi2 ; . . . ; xip ; xj1
; xj2

; . . . ; xjq�
ÿ Fi1;i2;...:;ip�xi1 ; xi2 ; . . . :; xip�Fj1;j2;...:;jq�xj1

; xj2
; . . . ; xjq�j � 0; �3�

for any integers i1 < i2 < � � � < ip and j1 < j2 < � � � < jq, for which j1 ÿ ip P l.
If condition (3) is satis®ed, then the same limiting results apply as if the vari-
ables of the process were independent with the same marginal distribution (the
same scale and location parameters an and bn can be chosen and the same
limiting extreme-value distribution FZ is also obtained). With a stronger de-
pendence structure, the behavior of extremes is a�ected by the local depen-
dence in the process as clusters of extreme values appear. In this case it can still
be shown that an extreme value modeling can be applied, the limiting extreme-
value distribution being equal to

FZ�z� � 1ÿ exp
�
ÿ 1� � s z�h=s

�
;

where the parameter h, called the extremal index, models the relationship be-
tween the dependence structure and the extremal behavior of the process (see
Leadbetter and Nandagopalan, 1989). This parameter is related to the mean
size of clusters of extremes (see Embrechts et al., 1997, ch. 8; McNeil, 1998).
The extremal index h veri®es: 06 h6 1. The equality h � 1 is obtained in the
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cases of weak dependence and independence. In other cases, the stronger the
dependence, the lower the extremal index.

Berman (1964) shows that the same form for the limiting extreme-value
distribution is obtained for stationary normal sequences under weak assump-
tions on the correlation structure (denoting by qm the correlation coe�cient
between Rt and Rt�m, the sum of squared correlation coe�cients

P�1
m�1 q2

m has
to remain ®nite). Leadbetter et al. (1983) consider various processes based on
the normal distribution: discrete mixtures of normal distributions and mixed
di�usion jump processes all have thin tails so that they lead to a Gumbel
distribution for the extremes. As explained in Longin (1997a), the volatility of
the process of returns (modeled by the class of ARCH processes) is mainly
in¯uenced by the extremes. De Haan et al. (1989) show that if returns follow an
ARCH process, then the minimum has a Fr�echet distribution.

2.2. The multivariate distribution of extreme returns 3

Let us consider a q-dimensional vector of random variables denoted by
R � �R1;R2; . . . ;Rq�. The realization of the ith component observed at time t is
denoted by Ri

t. Although the de®nition of extremes is natural and straight-
forward in the univariate case, many de®nitions can be taken in the multi-
variate case (see Barnett, 1976). In this study the multivariate minimum Zn

observed over a time-period containing n basic observations is de®ned as
Min R1

1; R1
2; . . . ;R1

n

ÿ �
; Min R2

1; R2
2; . . . ;R2

n

ÿ �
; . . . ;Min Rq

1; Rq
2; . . . ; Rq

n

ÿ �
. The mul-

tivariate minimal return corresponds to the vector of univariate minimal re-
turns observed over the time-period.

As for the univariate case, for an i.i.d. process, the exact multivariate dis-
tribution of the minimum can be simply expressed as a function of the distri-
bution of the basic variable. As in practice, we do not know the exact
distribution, so we consider asymptotic results. We assume that there is a series
of a vector of standardizing coe�cients (an, bn) such that the standardized
minimum �Zn ÿ bn�=an converges in distribution toward a non-degenerate
distribution. The main theorem for the multivariate case characterizes the
possible limiting distributions: a q-dimensional distribution FZ is a limiting
extreme-value distribution, if and only if, (1) its univariate margins F 1

Z ,
F 2

Z ; . . . ; F q
Z are either Fr�echet, Gumbel or Weibull distributions; and (2) there is

a dependence function, denoted by dFZ , which satis®es the following condition:

FZ�z1; z2; . . . ; zq� � 1ÿ F 1
Z �z1�F 2

Z �z2� � � � F q
Z �zq�ÿ �dFZ �zqÿz1;zqÿz2;...;zqÿzqÿ1�

: �4�

3 A presentation of multivariate extreme value theory can be found in Tiago de Oliveira (1973),

Galambos (1978) and Resnick (1987). Tawn (1988) deals speci®cally with the bivariate case.
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Unlike the univariate case, the asymptotic distribution in the multivariate
case is not completely speci®ed as the dependence function is not known but
has to be modeled. Considering two extremes Z i and Z j, a simple model is the
linear combination of the dependence functions of the two special cases of total
dependence and asymptotic independence as proposed by Tiago de Oliveira
(1973):

dFZi ;Zj �zj ÿ zi� � qij
Max�1; ezjÿzi�

1� ezjÿzi � �1ÿ qij�: �5�

The coe�cient qij represents the correlation between the extremes Zi and Zj.
In summary, extreme value theory shows that the statistical behavior of

extremes observed over a long time-period can be modeled by the Fr�echet,
Gumbel or Weibull marginal distributions and a dependence function. This
asymptotic result is consistent with many statistical models of returns used in
®nance (the normal distribution, the mixture of normal distributions, the
Student distribution, the family of stable Paretian distributions, the class of
ARCH processes. . .). The generality of this result is the basis for the extreme
value method for computing the VaR of a market position, as presented in
Section 3.

3. The extreme value method for computing the VaR of a market position

This section shows how extreme value theory can be used to compute the
VaR of a market position. 4 The method for a fully aggregated position, as
presented here, ®rst involves the univariate asymptotic distribution of the
minimal returns of the position. The method is then extended to the case of a
position decomposed on risk factors. The VaR of the position is obtained with
a risk-aggregation formula, which includes the following inputs: the sensitivity
coe�cients of the position on risk factors, the VaR of long or short positions in
risk factors, and the correlation between risk factors during extreme market
conditions. The issues of positions including derivatives and conditional VaR
based on the extremes are also discussed.

3.1. The extreme value method for a fully aggregated position

The method is summarized in the ¯ow chart in Fig. 1. Each step is detailed
below:

4 A general exposition of VaR is given in Wilson (1996), Du�e and Pan (1997) and Jorion

(1997).
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Step 1: Choose the frequency of returns f. The choice of the frequency should
be related to the degree of liquidity and risk of the position. For a liquid po-
sition, high frequency returns such as daily returns can be selected as the assets
can be sold rapidly in good market conditions. The frequency should be quite
high as extreme price changes in ®nancial markets tend to occur during very
short time-periods as shown by Kindleberger (1978). Moreover, low frequency
returns may not be relevant for a liquid position as the risk pro®le could
change rapidly. For an illiquid position, low frequency returns such as weekly
or monthly returns could be a better choice since the time to liquidate the assets
in good market conditions may be longer. However, the choice of a low fre-
quency implies a limited number of (extreme) observations, which could impact

Fig. 1. Flow chart for the computation of VaR based on extreme values (this ®gure recalls the eight

steps of the extreme value method for computing the VaR of a fully aggregated position).
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adversely upon the analysis as extreme value theory is asymptotic by nature.
The problem of infrequent trading characterizing assets of illiquid positions
may be dealt with by some data adjustment as done in Lo and MacKinlay
(1990) and Stoll and Whaley (1990). 5 The choice of frequency may also be
guided or imposed by regulators. For example, the Basle Committee (1996a)
recommends a holding period of 10 days.

Step 2: Build the history of the time-series of returns on the position Rt. For a
fully aggregated position, a univariate time-series is used.

Step 3: Choose the length of the period of selection of minimal returns T. The
estimation procedure of the asymptotic distribution of minimal returns does
not only consider the minimal return observed over the entire time-period but
several minimal returns observed over non-overlapping time-periods of length
T. For a given frequency f, one has to determine the length of the period of
selection of minimal returns, T or equivalently the number of basic returns, n,
from which minimal returns are selected (as already indicated, the two pa-
rameters T and n are linked by the relation T� nf ). The selection period has to
satisfy a statistical constraint: it has to be long enough to meet the condition of
application of extreme value theory. As this clearly gives an asymptotic result,
extremes returns have to be selected over time-periods long enough that the
exact distribution of minimal returns can be safely replaced by the asymptotic
distribution.

Step 4: Select minimal returns Zn. The period covered by the database is
divided into non-overlapping sub-periods each containing n observations of
returns of frequency f. For each sub-period, the minimal return is selected.
From the ®rst n observations of basic returns R1;R2; . . . ;Rn, one takes the
lowest observation denoted by Zn;1. From the next n observations
Rn�1;Rn�2; . . . ;R2n, another minimum called Zn;2 is taken. From nN observa-
tions of returns, a time-series �Zn;i�i�1;N containing N observations of minimal
returns is obtained. 6

Step 5: Estimate the parameters of the asymptotic distribution of minimal
returns. The three parameters an, bn and s of the asymptotic distribution of
minimal returns denoted by F asymp

Zn
are estimated from the N observations of

minimal returns previously selected. 7 The maximum likelihood method is used

5 I am grateful to a referee for pointing out this issue.
6 For a database containing Nobs observations of daily returns, for a frequency of basic returns f,

and for a selection period of minimal returns containing n basic returns, the number of minimal

returns N is equal to the integer part of Nobs/f/n.
7 While classical VaR methods consider the information contained in the whole distribution, the

method based on extreme values takes into account only the relevant information for the problem

of VaR: the negative extremes contained in the left tail. The extreme value method focuses on the

extreme down-side risk of the position instead of the global risk.
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here as it provides asymptotically unbiased and minimum variance estimates.
Note also that the maximum likelihood estimator can be used for the three
types of extreme value distribution (Fr�echet, Gumbel and Weibull) while other
estimators such as the tail estimator developed by Hill (1975) are valid for the
Fr�echet case only. The extremal index h may also be worth estimating if the
data present strong dependence. Details of the estimation of the extremal index
can be found in Embrechts et al. (1997, ch. 8).

Step 6: Goodness-of-®t test of the asymptotic distribution of minimal returns.
This step deals with the statistical validation of the method: does the asymp-
totic distribution of minimal returns estimated in Step 5 describe well the
statistical behavior of observed minimal returns? The test developed by Sher-
man (1957) and suggested by Gumbel (1958, p. 38), is based on the comparison
of the estimated and observed distributions. The test uses the series of ordered
minimal returns denoted by �Z 0n;i�i�1;N : Z 0n;16 Z 0n;26 � � � 6 Z 0n;N . The statistic is
computed as follows:

XN � 1

2

XN

i�0

F asymp
Zn

�Z 0n;i�1�
���� ÿ F asymp

Zn
�Z 0n;i� ÿ

1

N � 1

����;
where F asymp

Zn
�Z 0n;0� � 0 and F asymp

Zn
�Z 0n;N�1� � 1:

The variable XN is asymptotically distributed as a normal distribution with
mean �N=�N � 1��N�1 and an approximated variance �2eÿ 5�=�e2N�, where e
stands for the Neper number approximately equal to 2.718. The variable XN

can be interpreted as a metric distance over the set of distributions. A low
value for XN indicates that the estimated and observed distributions are near
each other and that the behavior of extremes is well described by extreme
value theory. Conversely, a high value for XN indicates that the estimated
and observed distributions are far from each other and that the theory does
not ®t the data. In practice, the value of XN is compared with a threshold
value corresponding to a con®dence level (5% for example). If the value of
XN is higher than the threshold value, then the hypothesis of adequacy of the
asymptotic distribution of minimal returns is rejected. The rejection can be
explained by the fact that minimal returns have been selected over too short
sub-periods. In other words, the number of basic returns from which minimal
returns are selected is too small. Extreme value theory is, in fact, an as-
ymptotic theory, and many basic observations should be used to select
minimal returns such that the estimated distribution used is near the limit. If
the hypothesis of adequacy is rejected, one has to go back to Step 3 and
choose a longer selection period. If the value of XN is lower than the given
threshold, the hypothesis of adequacy is not rejected and one can go further
to Step 7.

Step 7: Choose the value of the probability pext of a minimal return not ex-
ceeding the VaR. In the extreme value method, the usual de®nition for the
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probability is not used. 8 The reason is simple: we do not know of any model
with a theoretical foundation that allows a link between the VaR and the
probability of a return not exceeding the VaR (or more exactly ± VaR, as VaR
is usually de®ned to be a positive number). In the extreme value method, in-
stead of using the probability related to a basic return, the probability related
to a minimal return is used: for example, the probability of a minimal daily
return observed over a semester being above a given threshold (the threshold
value for a given value of the probability corresponding to the VaR number of
the position). As explained in Section 2, for an independent or weakly de-
pendent process, the two probabilities are related by: pext � pn. 9 Note that
when the distribution of returns is exactly known, the extreme value method is
equivalent to any classical methods as they give the same VaR number for a
given value of p or the associated value of pext. To emphasize the dependence of
the VaR on the distribution and the probability used, the VaR obtained with a
given distribution of returns FR and a probability p is denoted by VaR(FR, p),
and the VaR obtained with the associated exact distribution of minimal returns
FZn and a probability pext is denoted by VaR(FZn ; pn). Under the condition
pext � pn, we have VaR(FZn ; pn)�VaR(FR, p).

The choice of the de®nition of the probability is guided by the statistical
result concerning the extremes, presented is Section 2. The extreme value
theorem shows that the link between the probability related to a minimal re-
turn and the VaR can be developed on theoretical grounds. The strength of the
method is great as the asymptotic distribution of extremes is compatible with
many statistical models used in ®nance to describe the behavior of returns.

The choice of the value of probability pext is arbitrary (as in other methods).
However, several considerations can guide this choice: the degree of ®nancial
stability required by regulators (for example, the Basle Committee (1996a)
presently imposes a value for probability p equal to 0.99 implying a value for
probability pext equal to 0.99n assuming weak dependence or independence of
returns), the degree of risk accepted by the shareholders of ®nancial institu-
tions, and the communicability of the results in front of the Risk Committee of
the banks. For example, the VaR computed with a value of 95% for the

8 The existing VaR methods of the classical approach use the probability of an unfavorable move

in market prices under normal market conditions during a day or a given time-period, and then

deduce the VaR with a statistical model. For example, the VaR computed by RiskMetricsTM

developed by JP Morgan (1995) corresponds to the probability of observing an unfavorable daily

move equal to 5% (equivalent to the probability p of a return not exceeding the VaR equal to 95%).

In RiskMetricsTM, the link between the probability and the VaR is realized with the normal

distribution.
9 The equation pext � pn is still valid in the case of weak dependence. In the case of strong

dependence, one may use the following equation pext � �pn�h involving the extremal index.
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probability pext of a minimal return selected on a semester basis corresponds to
the expected value of the decennial shock often considered by banks.

Step 8: Compute the VaR of the position. The last step consists of computing
the VaR of the position with the asymptotic distribution of minimal returns
previously estimated. The full model contains the following parameters: the
frequency f and the number of basic returns n from which minimal returns are
selected, the three parameters an, bn and s of the asymptotic distribution of
minimal returns F asymp

Zn
, and the probability pext of observing a minimal return

not exceeding the VaR. For processes presenting strong dependence, if the
value of probability pext is derived from the value of probability p using the
equation pext � �pn�h, then the extremal index h for minimal returns is also
needed.

Considering the case of a fully aggregated position, the VaR expressed as a
percentage of the value of the position is obtained from the estimated as-
ymptotic distribution of minimal returns:

pext � 1ÿ F asymp
Zn

�ÿVaR� � exp

"
ÿ 1

�
� s

ÿVaRÿ bn

an

� ��1=s
#

�6�

leading to

VaR � ÿbn �
an

s
�1ÿ �ÿ ln�pext��s�: �7�

This ``full'' valuation method used to compute the VaR of a market position
requires the construction of the history of returns of the entire position. For
complex positions containing many assets or with a time-changing composi-
tion, it may be time-consuming to rebuild the history of returns of the position
and re-estimate the asymptotic distribution of minimal returns every time the
VaR of the position has to be computed. For this reason, it may be more ef-
®cient to decompose the position on a limited number of risk factors (such as
interest rates, foreign currencies, stock indexes and commodity prices) and
compute the VaR of the position in a simpler manner with a risk-aggregation
formula. Such a method is presented next.

3.2. The extreme value method for a position decomposed on risk factors

The risk-aggregation formula relates the VaR of the position to the sensi-
tivity coe�cients of the position on risk factors, the VaR of long or short
positions in risk factors and the correlation between risk factors. In this way,
the computational work is reduced to the estimation of the multivariate dis-
tributions of both minimal and maximal returns of risk factors (which is done
once for all) and to the calculation of the sensitivity coe�cients of the position
on risk factors (which is repeated every time the composition of the position
changes).
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A simple ad hoc risk-aggregation formula is used here to compute the VaR
of a position. 10 Considering q risk factors, the VaR of a position characterized
by the decomposition weights �wi�i�1;q, is given by

VaR �
����������������������������������������������������Xq

i�1

Xq

j�1

qij wi wj VaRi VaRj

vuut ; �8�

where VaRi represents the VaR of a long or short position in risk factor i, wi

the sensitivity coe�cient of the position on risk factor i and qij the correlation
of extreme returns on long or short positions in risk factors i and j.

For each risk factor, the VaR of a long position, denoted by
VaRl

i �F asymp
Zn

; pext�, is computed with Eq. (7) using the parameters of the
marginal distribution of minimal returns. Similarly, the VaR of a short posi-
tion, denoted by VaRs

i �F asymp
Yn

; pext�, is computed with the same equation using
the parameters of the marginal distribution of maximal returns F asymp

Yn
.

Considering two risk factors i and j, four types of correlation of extreme
returns qij can be distinguished according to the type of position (long or short)
in the two risk factors. For a position long (short) in both risk factors i and j,
the correlation qij corresponds to the correlation between the minimal (maxi-
mal) returns of risk factors i and j. For a position long (short) in factor i and
short (long) in factor j, the correlation qij corresponds to the correlation be-
tween the minimal (maximal) return of risk factor i and the maximal (minimal)
return in factor j. To emphasize the dependence on the type of position (long or
short), the four correlation coe�cients are denoted by qll

ij , qss
ij , qls

ij and qsl
ij .

In the case of total dependence (qij � 1 for all i and j), the VaR of the
position is equal to the sum of the weighted VaR of each risk factor,Pq

i�1 wi VaRi. In the case of independence (qij � 0 for all i and j, i 6� j), the
VaR of the position is equal to the square root of the weighted sum of the

squared VaR of each risk factor,

��������������������������������Pq
i�1�wi VaRi�2

q
:

To summarize, for a position decomposed on a given set of q risk factors,
the VaR can be formally written as

VaR wi� �i�1;q; VaRl
i�F asymp

Zn
; pext�ÿ �

i�1;q
; VaRs

i �F asymp
Yn

; pext�ÿ �
i�1;q

;

�
qab

ij

� �a;b�l or s

i;j�1;q

�
:

10 This formula is inspired by the formula used in the variance/covariance method. In the case of

normality, the VaR obtained with the position decomposed on risk factors and based on the risk-

aggregation formula (8) with the VaRs of risk factors and correlation coe�cients classically

computed corresponds to the VaR obtained with the fully aggregated position.
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The method needs the estimation of 6q parameters of the marginal distribu-
tions of both minimal and maximal returns used to compute the 2q VaRs for
long and short positions in risk factors, and the estimation of 4q correlation
coe�cients of the multivariate distribution of extreme returns used to aggre-
gate the VaRs of risk factors.

The extreme value method takes explicitly into account the correlation be-
tween the risk factors during extreme market conditions. It has often been
argued that there is a rupture of correlation structure in periods of market
stress. For example, using multivariate GARCH processes, Longin and Solnik
(1995) conclude that correlation in international equity returns tends to in-
crease during volatile periods. Applying multivariate extreme value theory,
Longin and Solnik (1997) ®nd that correlation in international equity returns
depends on the market trend and on the degree of market volatility. Correla-
tion between extreme returns tends to increase with the size of returns in down-
markets and to decrease with the size of returns in up-markets.

3.3. Positions with derivatives

The VaR of positions with classical options is usually computed by the
delta-gamma method to take into account the non-linearity. The VaR of po-
sitions with more complex options is often obtained with a Monte Carlo
simulation method since no analytical formula is available. With non-linearity,
the tail behavior of the distribution is a critical issue. Although the extreme
value method may be di�cult to implement straightforwardly, extreme value
theory may be very useful for determining a model for generating returns from
the point of view of extreme events. For example, the non-rejection of the
Fr�echet distribution would suggest fat-tailed distributions such as a Student
distribution or a GARCH process. The non-rejection of the Gumbel distri-
bution for extreme returns would suggest thin-tailed distributions such as the
normal distribution or a discrete mixture of normals. The non-rejection of the
Weibull distribution for extreme returns would suggest that bounded distri-
butions with no tails may be used to describe returns. 11 Parameters from these
models may be estimated by considering the extremes. For example, the

11 Note that if a given distribution of returns implies a particular (Fr�echet, Gumbel or Weibull)

distribution of extreme returns, the reverse is not true. For example, a Student distribution for

returns implies a Fr�echet distribution for extreme returns, but a Fr�echet distribution for extreme

returns does not necessarily imply a Student distribution for returns. Results about the extremes

should be used to infer information about the tails of the distribution only. It should not be used to

infer information about the whole distribution as the center of the distribution is not considered by

extreme value theory.
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number of degrees of freedom of a Student distribution and the degree of
persistence in a GARCH process are directly related to the tail index value.

In an extreme value analysis using observed data, it is the historical distri-
bution that is studied. However, for evaluating a position with derivatives, one
may need a risk-neutral distribution. Using results for the normal distribution
(Leadbetter et al., 1983, pp. 20±21), in a world �a la Black±Scholes, the risk-
neutral asymptotic distribution of extreme returns di�ers from the historical
one by the value of the location parameter only: b�n � bn ÿ �lr0�, where the
asterisk refers to the risk-neutrality, and where l and r0 represent respectively
the expected return and the risk-free interest rate over a time-period of length f.
The scale parameter and the tail index are una�ected by the change of distri-
bution: a�n � an and s� � s � 0. For other processes (such as a mixed di�usion
process with jumps or a GARCH process), all three parameters may be a�ected
by the change of probability.

3.4. Conditional VaR based on extreme values

Extreme value theory gives a general result about the distribution of ex-
tremes: the form of the limiting distribution of extreme returns is implied by
many di�erent models of returns used in ®nance (the normal distribution, a
discrete mixture of normals, the Student distribution, the stable Paretian
distribution, ARCH processes...). Such generality may also mean a lack of
re®nement. For example, as the asymptotic extreme value distribution is
largely unconditional, the VaR given by the extreme value method is inde-
pendent of the current market conditions. In practice, everyday risk man-
agement may be improved by taking into account the current market
conditions. Thus it may be useful to investigate conditional VaR based on
extreme values.

3.5. Related works

Boudoukh et al. (1995) also consider the distribution of extreme returns.
They do not use the asymptotic results given by extreme value theory but
derive exact results by assuming a normal distribution for returns. In a non-
parametric setting Dimson and Marsh (1997) consider the worst realizations
of the portfolio value to compute the risk of a position. Danielsson and De
Vries (1997) and Embrechts et al. (1998) use a semi-parametric method to
compute the VaR. In both works, the tail index is estimated with HillÕs esti-
mator, which can be used for the Fr�echet type only. Note that the Weibull
distribution is sometimes obtained, and the Gumbel distribution is often not
rejected by the data (some foreign exchange rates and non-US equity returns
for example).

F.M. Longin / Journal of Banking & Finance 24 (2000) 1097±1130 1111



4. Examples of application

The case of a fully aggregated position is illustrated with long and short
positions in the US equity market. To illustrate the case of a position de-
composed on risk factors, long, short and mixed positions in the US and
French equity markets are considered.

Table 1

Estimation of the parameters of the asymptotic distributions of extreme daily returns on the S&P

500 Index observed over time-periods of increasing length: 1 week, 1 month, 1 quarter and 1 se-

mestera

Length of the selection

period

Scale

parameter an

Location

parameter bn

Tail index

s
Goodness-of-®t

test statistics

(A) Minimal daily returns

1 week �T � 5� 0.492 )0.518 )0.183 2.770

�f � 1; n � 5;N � 1; 585� (0.009) (0.013) (0.020) [0.001]

1 month (T� 21) 0.533 )1.074 )0.148 1.371

�f � 1; n � 21;N � 377� (0.023) (0.030) (0.031) [0.085]

1 quarter �T � 63� 0.585 )1.451 )0.302 )1.040

�f � 1; n � 63;N � 125� (0.049) (0.059) (0.070) [0.851]

1 semester �T � 125� 0.623 )1.726 )0.465 )0.229

�f � 1; n � 125;N � 63� (0.085) (0.091) (0.128) [0.591]

(B) Maximal daily returns

1 week �T � 5� 0.501 0.572 )0.084 3.291

�f � 1; n � 5;N � 1; 585� (0.012) (0.013) (0.032) [<0.001]

1 month �T � 21� 0.544 1.158 )0.140 0.938

�f � 1; n � 21;N � 377� (0.025) (0.032) (0.042) [0.174]

1 quarter �T � 63� 0.705 1.597 )0.104 0.516

�f � 1; n � 63;N � 125� (0.053) (0.071) (0.066) [0.303]

1 semester �T � 125� 0.845 1.985 )0.060 )0.139

�f � 1; n � 125;N � 63� (0.087) (0.118) (0.082) [0.555]

a This table gives the estimates of the three parameters of the asymptotic distribution of extreme

daily returns selected over time-periods of increasing length T as indicated in the ®rst column.

Estimation results are given for the distribution of minimal daily returns (Panel A) and for the

distribution of maximal daily returns (Panel B). The scale and location parameters (an and bn) and

the tail index (s) are estimated by the maximum likelihood method. Standard errors of parameters'

estimates are given below in parentheses. The database consists of daily returns on the S&P 500

index over the period January 1962±December 1993 (7927 observations). Extreme daily (f � 1)

returns are selected over non-overlapping sub-periods of length ranging from 1 week to 1 semester.

A minimal (maximal) daily return corresponds to the lowest (highest) daily return on the S&P 500

index over a given sub-period. The number of selected extremes (N) is inversely related to the length

of the selection period (T) or equivalently to the number of daily returns from which extreme re-

turns are selected (n). The last column indicates the result of Sherman's goodness-of-®t test with the

p-value (probability of exceeding the test-value) given below in brackets. The 5% con®dence level at

which the null hypothesis of adequacy (of the estimated asymptotic distribution of extreme returns

to the empirical distribution of observed extreme returns) can be rejected, is equal to 1.645.
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4.1. The case of a fully aggregated position

The extreme value method presented in Section 3.1 is now applied to the
computation of the VaR of both long and short positions in the Standard and
PoorÕs 500 index (this widely available data are used here to allow an easy
replication of the results). Estimation results of the asymptotic distribution of
extreme returns are ®rst presented. VaRs are then computed for di�erent values
of the probability of an extreme return not exceeding the VaR. The sensitivity
of VaR results to the frequency and to the length of the selection period, and
the impact of the stock market crash of October 1987 on VaR results are also
studied. The VaR given by the extreme value method is also compared with the
VaR given by classical methods. Finally, capital requirements are computed in
order to assess the regulation of market risks.

4.1.1. Estimation of the asymptotic distribution of extreme S&P 500 index
returns

Results of the estimation of the parameters of the asymptotic extreme value
distribution are given in Table 1 for minimal returns (Panel A) and for max-
imal returns (Panel B). Extreme daily (f � 1 day) returns are observed over
time-periods ranging from one week (T � 5 days) to one semester (T � 125
days). The database consists of daily returns on the S&P 500 index over the
period January 1962±December 1993. Looking at a long time-period (without
important structural changes) allows consideration of a variety of market
conditions that may occur again in the future. Returns are de®ned as loga-
rithmic index price changes. Considering the results for minimal daily returns:
the scale parameter increases from 0.492 to 0.623, indicating that the negative
extremes are more and more dispersed; the location parameter increases (in
absolute value) from 0.518 to 1.726, showing that the average size of negative
extremes is larger and larger; the tail index value is always negative and is
between )0.148 and )0.465, implying that the limiting distribution is a Fr�echet
distribution. 12 In other words, the asymptotic distribution of minimal daily
returns shifts to the left and spreads while the shape of the distribution, and
specially the way the left tail decreases, remains the same. As the extreme value
distribution is a Fr�echet distribution, Hill's estimator based on tail observa-
tions can be used for the tail index. Following the procedure used in Jansen and
De Vries (1991), the tail index estimate for the left tail is equal to )0.290 with a
standard error of 0.043.

12 A Fr�echet distribution for extreme returns in the US equity market has been found by Jansen

and De Vries (1991), Loretan and Phillips (1994) and Longin (1996). Considering other

international equity markets, Longin and Solnik (1997) ®nd that all types of extreme value

distribution (Fr�echet, Gumbel and Weibull) are obtained.
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A likelihood ratio test shows that the Gumbel distribution (and a fortiori the
Weibull distribution) is always rejected in favor of the Fr�echet distribution.
The test is distributed as a chi-square variable with one degree of freedom
(obtained by di�erence in the number of parameters in the Fr�echet and Gumbel
distributions). For example, in the case of minimal returns selected over a
semester, the value of the test is equal to 40.545 with a p-value (probability to
exceed the test value) less than 0.001.

Sherman's goodness-of-®t test indicates that the hypothesis of adequacy (of
the estimated asymptotic distribution of extreme returns to the empirical dis-
tribution of observed returns) is not rejected at the 5% con®dence level when
extreme daily returns are selected over time-periods longer than a month. For
extremes selected over a week, the test statistic is equal to 2.770 and is higher
than the threshold value of 1.645 associated with a 5% con®dence level. For
extremes selected over a month, a quarter and a semester, the test statistics are
respectively equal to 1.371, )1.040 and )0.229, and are lower than the
threshold value. The exact distribution of minimal returns can then be safely
replaced by the asymptotic distribution as long as minimal returns are selected
over time-periods of length greater than a month. Similar comments apply to
maximal daily returns. However, the right tail appears less heavy than the left
tail, and the Gumbel distribution for maximal returns is not rejected by the
data.

The impact of the stock market crash of October 1987 (the greatest obser-
vation associated with a record-low return of )22.90%) on the estimation of
the parameters of the distribution of minimal returns is also investigated.
Considering minimal daily returns selected over a semester, the whole sample
contains 63 observations �N � 63�. From Table 1A the parameters' estimates
are with the standard error in parentheses: 0.623 (0.085) for the scale param-
eter, )1.726 (0.091) for the location parameter, and )0.465 (0.128) for the tail
index. Removing the observation of the October 1987 crash from the sample
(N is now equal to 62) and estimating the distribution of minimal returns again,
the parameters' estimates are now: 0.604 (0.054) for the scale parameter,
)1.748 (0.064) for the location parameter and )0.301 (0.093) for the tail index.
The impact of the greatest observation is largest on the tail index, while the two
standardizing coe�cients are changed slightly. By dropping the observation of
the stock market crash of October 1987, the estimated distribution appears to
be less fat-tailed (the tail index is closer to zero). Although the di�erence is not
statistically signi®cant, the economic impact in terms of VaR and regulatory
capital requirement may be worth studying.

The Basle Committee (1996a) allows banks to consider price shocks
equivalent to a short holding period such as a day, but it recommends a
holding period of 10 days. The behavior of the asymptotic distribution under
temporal aggregation is not speci®ed by extreme value theory although the
tail index value should remain the same, as shown by Feller (1971, p. 279).
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For this reason, asymptotic distributions of extreme returns of various fre-
quencies are also estimated. Estimation results are given in Table 2 for
minimal returns (Panel A) and for maximal returns (Panel B). Three values
are used for frequency f: 1, 5 and 10 days. Empirically, the asymptotic dis-
tribution of minimal (maximal) returns spreads and shifts to the left (right).
For example, considering minimal returns, the scale parameter is equal to
0.623 for one-day returns, 1.098 for ®ve-day returns and 1.875 for 10-day
returns, and the location parameter is equal to )1.726 for one-day returns,
)2.746 for ®ve-day returns and )3.244 for 10-day returns. Such a result was
expected as low-frequency returns are more volatile than high-frequency re-
turns. The tail index value is always negative (between )0.465 and )0.134)

Table 2

Estimation of the parameters of the asymptotic distributions of extreme returns on the S&P 500

Index of various frequencies: 1, 5 and 10 daysa

Frequency of returns Scale

parameter an

Location

parameter bn

Tail index

s
Goodness-of-®t

test statistics

(A) Minimal returns

One-day returns �f � 1� 0.623 )1.726 )0.465 )0.229

�T � 125; n � 125;N � 63� (0.085) (0.091) (0.128) [0.591]

Five-day returns �f � 5� 1.098 )2.746 )0.319 )0.599

�T � 125; n � 25;N � 63� (0.136) (0.160) (0.120) [0.725]

Ten-day returns �f � 10� 1.875 )3.244 )0.134 0.499

�T � 120; n � 12;N � 63� (0.208) (0.272) (0.096) [0.309]

(B) Maximal returns

One-day returns �f � 1� 0.845 1.985 )0.060 )0.139

�T � 125; n � 125;N � 63� (0.087) (0.118) (0.082) [0.555]

Five-day returns �f � 5� 1.207 3.033 )0.147 )1.929

�T � 125; n � 25;N � 63� (0.138) (0.176) (0.115) [0.973]

Ten-day returns �f � 10� 1.606 3.834 )0.100 )0.243

�T � 120; n � 12;N � 63� (0.181) (0.239) (0.115) [0.596]

a This table gives the estimates of the three parameters of the asymptotic distribution of extreme

returns of various frequencies f as indicated in the ®rst column. Estimation results are given for the

distribution of minimal returns (Panel A) and for the distribution of maximal returns (Panel B).

The scale and location parameters (an and bn) and the tail index (s) are estimated by the maximum

likelihood method. Standard errors of parameters' estimates are given below in parentheses. The

time-series of returns of various frequencies are built from the database of daily returns on the S&P

500 index over the period January 1962±December 1993. The parameter n is adjusted such that

extreme returns of all three frequencies are selected over non-overlapping semesters (T � 125 for

one-day and ®ve-day returns and T � 120 for 10-day returns). The last column indicates the result

of Sherman's goodness-of-®t test with the p-value (probability of exceeding the test-value) given

below in brackets. The 5% con®dence level at which the null hypothesis of adequacy (of the esti-

mated asymptotic distribution of extreme returns to the empirical distribution of observed extreme

returns) can be rejected, is equal to 1.645.
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implying a Fr�echet extreme value distribution for all frequencies. It seems to
decrease slightly for minimal returns while it remains fairly stable for maxi-
mal returns.

The extremal index h, which models the relationship between the depen-
dence structure and the behavior of extremes of the process, is also estimated.
Using the blocks method presented in Embrechts et al. (1997, pp. 419±421, Eq.
(8.10)), the estimate of h is equal to 0.72 when looking at minimal one-day
returns selected over a semester, and equal to 0.73 when looking at maximal
one-day returns (a threshold value of �5% is used to de®ne return excee-
dances). Higher values of h are obtained when a lower frequency for returns is
used: 0.84 for minimal 10-day returns selected over a semester and 0.92 for
maximal 10-day returns. These estimates are close to the value h � 1 obtained
for the case of weak dependence or independence.

4.1.2. VaR of long and short positions in the S&P 500 index
The estimations obtained above are now used to compute the VaR of

positions in the S&P 500 index. Empirical results are reported in Table 3 for a
long position (Panel A) and for a short position (Panel B). Two holding pe-
riods are considered: 1 day and 10 days (f � 1 and 10). Extremes returns are
selected over time-periods of two di�erent lengths: 1 quarter and 1 semester.
The value of the probability pext of an extreme return not exceeding the VaR
ranges from 50% to 99% (a higher probability value meaning a higher risk
aversion or a higher degree of conservatism). It is important to compute the
VaR for di�erent probability values as it gives an idea of the pro®le of the
expected loss beyond the VaR. 13 For example, considering a holding period
of 1 day and minimal returns selected on a semester basis, the VaR is equal to
$1.98 for a long position of $100 and for a probability value of 50%. In other
words, there is one chance in two that the position loses more than $1.98 in
one trading session over a semester. The concept of mean waiting period (also
called return period) is useful for interpreting the results. The mean waiting
period is de®ned as the average time that one has to wait to see an observation
exceeding a given threshold. The mean waiting period for a minimal return
less than or equal to level z, denoted by T(z) is equal to 1=F asymp

Zn
�z� or 1/

(1 ) pext), expressed in units of the selection period of minimal returns. The
mean waiting period that one has to wait to observe a loss greater than $1.98
is then equal to two semesters (or one year). For a value of 95% for the

13 See Longin (1997b), Embrechts et al. (1998) and Artzner et al. (1999) for a measure of the

expected loss beyond the VaR.
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probability pext (equivalent to a mean waiting period of 20 semesters or 10
years), the VaR increases to $5.72. A higher value for pext implies a higher
VaR number. A con®dence band measuring the uncertainty due to the es-
timation procedure of the asymptotic extreme value distribution can be

Table 3

VaR of long and short positions in the S&P 500 Index computed using the extreme value methoda

Probability of not

exceeding VaR

Holding period: 1 day Holding period: 10 days

Selection period:

1 quarter

Selection period:

1 semester

Selection period:

1 quarter

Selection period:

1 semester

(A) Long position

50% 2.18 1.98 4.12 3.72

(1 year) [2.05, 2.30] [1.88, 2.07] [3.91, 4.33] [3.50, 3.94]

75% 2.98 2.78 5.80 5.41

(2 years) [2.74, 3.23] [2.59, 2.97] [5.49, 6.11] [5.06, 5.77]

90% 4.21 4.20 7.78 7.72

(5 years) [3.68, 4.75] [3.72, 4.68] [7.26, 8.29] [7.05, 8.40]

95% 5.36 5.72 9.23 9.67

(10 years) [4.42, 6.29] [4.77, 6.66] [8.48, 9.98] [8.57, 10.77]

99% 9.07 11.76 12.63 15.19

(50 years) [5.62, 12.52] [7.27, 16.25] [10.86, 14.41] [11.85, 18.54]

(B) Short position

50% 2.38 2.26 4.20 4.24

(1 year) [2.26, 2.58] [2.16, 2.37] [4.03, 4.36] [4.05, 4.44]

75% 3.10 3.04 5.54 5.70

(2 years) [2.91, 3.30] [2.89, 3.20] [5.29, 5.79] [5.41, 6.00]

90% 4.02 3.98 7.17 7.53

(5 years) [3.66, 4.37] [3.72, 4.24] [6.74, 7.61] [7.02, 8.04]

95% 4.73 4.69 8.41 8.95

(10 years) [4.18, 5.28] [4.31, 5.08] [7.76, 9.06] [8.17, 9.73]

99% 6.56 6.42 11.44 12.57

(50 years) [5.10, 8.02] [5.48, 7.37] [9.82, 13.07] [10.53, 14.61]

a This table gives the VaR of positions in the S&P 500 index computed using the extreme value

method for various values of the probability pext of an extreme return not exceeding the VaR, as

indicated in the ®rst column. The corresponding waiting periods are given below in parentheses.

The VaR of a long position (Panel A) is obtained with the estimated asymptotic distribution of

minimal returns, while the VaR of a short position (Panel B) is obtained with the estimated as-

ymptotic distribution of maximal returns. The VaR is computed for a position of $100, or

equivalently, the VaR is expressed as the percentage of the value of the position. Two holding

periods are considered: 1 and 10 days ( f � 1 and 10). Extremes returns are selected over non-

overlapping time-periods of two di�erent lengths: 1 quarter and 1 semester. The probability pext of

observing an extreme return not exceeding the VaR depends on the length of the selection period

(parameter T or n for a given frequency f ): pext � pext�n�. The probability used to compute the

VaR with extreme returns selected on a quarterly basis �n � 63� is related to the one used to

compute the VaR computed with extreme returns selected on a semester basis �n � 125� by using

the equation: pext�63� � pext�125�63=125
. The 50% con®dence band is given below in brackets for

each estimate of VaR. It is estimated from the quantiles of the estimated asymptotic distribution

of extreme returns.
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computed. 14 For example, for a long position and a probability value of 95%,
the 50% con®dence band for the VaR estimate of $5.72 is $4.77, $6.66. In
other words there is a 50% chance for the VaR to be located between $4.77
and $6.66. The 90% con®dence band is $3.42, $8.01.

Impact of the frequency: From the results reported in Table 3, the VaR
numbers computed from returns with the lower frequency (f � 10 days) are
always higher than the VaR computed from returns with the higher frequency
(f � 1 day). They are around 90% higher in most of the cases. In order to
compute the regulatory capital requirement, VaR numbers calculated ac-
cording to shorter holding periods than 10 days have to be scaled up to 10
days, by the square root of the time factor. For example, VaR obtained from
daily returns would have to be multiplied by a time factor of

�����
10
p � 20. For a

long position and a probability value of 95%, the scaled VaR obtained with
one-day returns is equal to $18.09 �� �����

10
p � 5:72� 21and is thus much higher

than the VaR computed with 10-day returns ($9.67). Such a di�erence suggests
that the scaling factor proposed by the Basle Committee may be too high.

Impact of the length of the selection period: The VaR can be computed from
the distribution of extreme returns selected over time-periods of di�erent length
as long as it ®ts well the empirical distribution of observed extremes. Of course,
the value of the probability pext has to be adjusted as this parameter depends on
the length of the selection period. For two selection periods containing n and n0

basic returns, a simple adjustment rule may be pext�n� � �pext�n0��n=n0 . This rule
is consistent with i.i.d. processes and also with processes presenting weak or
strong dependence. VaR results previously presented for extreme returns se-
lected over a semester are now compared with those obtained for extreme re-
turns selected over a di�erent time-period. The probability value of 95% used in
the case of extreme returns selected over a semester corresponds to a proba-
bility value of 97.44% �� 0:9563=125� for extreme returns selected over a quarter.
Using the estimates of the parameters given in Table 1A the corresponding
VaR numbers for a long position are $5.36 for a selection period of a quarter.
This number is not statistically di�erent from the VaR obtained with a selec-
tion period of a semester ($5.72). As similar VaR numbers are obtained, the
extreme value method seems to be robust to the choice of the length of the
selection period.

Impact of the dependence in the data: The relationship between the depen-
dence in the data and the behavior of extremes is modeled with the extremal
index h. When the probability pext of an extreme return not exceeding the VaR

14 The formula for the estimation error on the quantile estimation is given in Kendall (1994, pp.

358±359). The estimation risk for VaR is discussed in Jorion (1996). Techniques for verifying the

accuracy of VaR can also be found in the recommendations of the Basle Committee on backtesting

(1996b) and in Kupiec (1995).
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is derived from the probability p of a basic return not exceeding the VaR, the
equation pext � �pn�h should be used in the case of strong dependence. Note
that, as the extremal index is always lower than one, the VaR is always higher
in the case of strong dependence than in the case of weak dependence or in-
dependence. Empirically, using the estimate of h equal to 0.72 obtained with
minimal daily returns selected over a semester, the equation pext � pn � 0:95
becomes pext � �pn�h � 0:950:72 � 0:9637 by taking into account the depen-
dence. The corresponding VaR is equal to $6.60, compared to $5.72 obtained
by assuming weak dependence or independence of returns. The impact of de-
pendence seems to be less pronounced when a lower frequency for returns is
employed. Using the estimate of h equal to 0.84 obtained with minimal 10-day
returns selected over a semester, the probability pext corrected for the e�ect of
dependence is equal to 95.78% �� 0:950:84� and the corresponding VaR is equal
to $10.58 compared to $9.67 obtained by assuming weak dependence or in-
dependence of returns. The di�erence in VaR results is not statistically sig-
ni®cant but it may be judged quite large from an economic point of view
(additional capital is always costly for ®nancial institutions).

Impact of the stock market crash of October 1987: The impact of the stock
market crash of October 1987 on VaR results is also investigated. Using the
asymptotic distribution of minimal daily returns selected over a semester, the
VaR of a long position is equal to $4.65 by excluding the crash from the set of
minimal returns for the estimation, compared with $5.72 by including the
crash. From a statistical point of view, the di�erence can be attributed to the
tail index, whose value is larger when the return observation of the crash is
included in the estimation.

4.1.3. Comparison with classical methods
The VaR given by the extreme value method, VaR(F asymp

Zn
; pext) for a long

position or VaR(F asymp
Yn

; pext) for a short position, is now compared with the
VaR given by classical methods, denoted by VaR(FR, p), where FR is a par-
ticular distribution of returns. 15 To make VaR results given by both ap-
proaches directly comparable, it is assumed that the probabilities pext and p are
related by the equation: pext � pn, which is valid under the assumption of weak
dependence and independence of returns. Four classical VaR methods are
considered:
· VaR(F his

R , p) based on the historical distribution of returns, denoted by F his
R .

· VaR(F nor
R ; p) based on the normal distribution of returns, denoted by F nor

R . 16

15 Former empirical studies on VaR include Beder (1995) and Jackson et al. (1997).
16 Over the period January 1962±December 1993, the estimates of the mean l and standard

deviation r of the normal distribution of returns are 0.027% and 0.883% for one-day returns, and

0.264% and 2.852% for 10-day returns.
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· VaR(F GARCH
Rt

; p) based on the conditional GARCH process. A
GARCH(1, 1) is used here. Return Rt observed at time t is assumed to be
drawn from a conditional normal distribution denoted by F GARCH

Rt
. The con-

ditional variance rt
2 of this distribution is given by r2

t � a0 � a1 e2
tÿ1

�b1 r2
tÿ1, where parameter a1 represents the persistence in volatility of the

latest squared innovation et
2
ÿ1, and parameter b1 measures the persistence

in volatility of the past variance rt
2
ÿ1. 17

· VaR(F EWMA
Rt

; p) based on the exponentially weighted moving average
(EWMA) process for the variance used in RiskMetricsTM. Return Rt ob-
served at time t is assumed to be drawn from a conditional normal distribu-
tion denoted by F EWMA

Rt
. The conditional variance rt

2 of this distribution is
given by r2

t � �1ÿ k�e2
tÿ1 � kr2

tÿ1, where the parameter k, called the decay
factor, re¯ects the persistence of volatility over time. 18 This process is an in-
tegrated GARCH(1, 1) process with the constraint a1 � b1 � 1.
The methods using the asymptotic extreme value distribution, the empirical

distribution and the normal distribution are unconditional as they give the
same results whatever the market conditions at the time of estimation. Con-
ditional models such as the GARCH and EWMA processes account for the
time-varying conditions of the market as they use a normal distribution with
time-varying mean and variance. As a consequence, they lead to a VaR which
re¯ects the degree of market volatility at the time of estimation.

Empirical VaR results for positions in the S&P 500 index are given in Table 4
for the various methods presented above. The VaR is computed for a long
position (Panel A) and a short position (Panel B). Two holding periods are
considered: 1 and 10 days (f � 1 and 10). Three values for the probability pext

of an extreme return not exceeding the VaR are taken: 50%, 95% and 99%
corresponding to waiting periods respectively equal to 1, 10 and 50 years.

Considering a long position and a holding period of 1 day, the VaR based
on the historical distribution of returns observed over the period January
1962±December 1993 is equal to $2.06 for a value of 50% for probability pext

and to $6.32 for a probability value of 95%. These numbers are close to those
obtained with the extreme value distribution: $1.98 and $5.72. Such results are
consistent with the good ®t of the extreme value distribution to the data as
previously discussed. Note that for very high probability values (99% for ex-
ample), the VaR cannot be computed from the historical method because of

17 The estimates of the three parameters a0, a1 and b1 of the GARCH(1, 1) process are

respectively equal to 0.004, 0.094 and 0.904 for one-day returns, and 0.488, 0.141 and 0.807 for

10-day returns.
18 The estimate of the parameter k of the EWMA process is equal to 0.93 for one-day returns and

0.86 for 10-day returns.
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the lack of data. Such a drawback does not exist for the extreme value method
which, as a parametric method, allows out-of-sample VaR computations.

The VaR based on the unconditional normal distribution of returns is equal
to $2.22 for a value of the probability pext equal to 50%. By comparison, the
VaR based on the asymptotic extreme value distribution is equal to $1.98. For
low probability levels, the two methods then lead to similar results. As the
normal distribution has thin tails, the VaR computed for more conservative
probability levels is not much higher: for example, for a value of probability
pext equal to 95%, it is equal to $2.93, a number much lower than that given by
the extreme value distribution ($5.72). Such a result illustrates the problem of

Table 4

VaR of long and short positions in the S&P 500 Index computed using the extreme value method

and classical methodsa

Methods used to

compute VaR

Holding period: 1 day Holding period: 10 days

Probability of not exceeding VaR Probability of not exceeding VaR

50% 95% 99% 50% 95% 99%

(A) Long position

VaR(F asymp
Zn

; pext� 1.98 5.72 11.76 3.72 9.67 15.19

VaR(F his
R ; p) 2.06 6.32 n.c. 3.73 9.58 n.c.

VaR(F nor
R ; p) 2.22 2.93 3.31 4.27 7.24 8.70

VaR(F GARCH
Rt

; p) 1.01 1.34 1.52 2.12 3.73 4.53

VaR(F EWMA
Rt

; p) 0.93 1.24 1.40 1.95 3.41 4.12

(B) Short position

VaR(F asymp
Yn

; P ext) 2.26 4.69 6.42 4.24 8.95 12.57

VaR(F his
R ; p) 2.41 4.65 n.c. 4.01 9.19 n.c.

VaR(F nor
R ; p) 2.27 2.98 3.36 4.80 7.77 9.23

VaR(F GARCH
Rt

; p) 1.09 1.43 1.60 2.81 4.43 5.22

VaR(F EWMA
Rt

; p) 0.99 1.29 1.45 2.48 3.93 4.25

a This table gives the VaR of positions in the S&P 500 index computed using various methods as

indicated in the ®rst column. The VaR is computed for a long position (Panel A) and for a short

position (Panel B). Five statistical models are considered: the asymptotic distribution of extreme

returns, the historical distribution of returns, the unconditional normal distribution of returns, and

GARCH and EWMA processes of returns. The VaR is computed for a position of $100, or

equivalently, the VaR is expressed as the percentage of the value of the position. Two holding

periods are considered: 1 and 10 days (f � 1 and 10). Extreme returns are selected over non-

overlapping semesters (n � 125 and T � 125 for one-day returns and n � 12 and T � 120 for 10-

day returns). Three values for the probability pext of an extreme return not exceeding the VaR are

taken: 50%, 95% and 99% corresponding to waiting periods respectively equal to 1 year, 10 years

and 50 years. For the classical VaR methods, the probability p of a return not exceeding the VaR is

related to probability pext by the relation pext � pn , which is valid under the assumption of weak

dependence or independence of returns. For the conditional models (GARCH and EWMA pro-

cesses), the VaR is computed on December 31, 1993 (the last day of the database). For high values

of probability pext (or p), the VaR is not calculable (n.c.) with the historical distribution because of

the lack of data. All statistical models are estimated over the period January 1962±December 1993.
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using the normal distribution in the presence of fat-tailed time-series: the VaR
is largely underestimated by the normal distribution for conservative proba-
bility levels. As the estimation of the extreme value distribution lets the data
speak for themselves, the model risk related to the choice of a particular dis-
tribution of returns is considerably reduced for the extreme value method.

The VaR based on the conditional GARCH and EWMA processes of re-
turns is respectively equal to $1.01 and $0.93 for a value of the probability pext

equal to 50% (VaR estimated on 31 December 1993). VaR numbers for higher
probability levels are not much higher as the two processes assume that the
conditional distribution of returns is normal. The two conditional models give
low levels of VaR re¯ecting a low level of estimated volatility at the chosen
time of VaR estimation. Higher levels of VaR would be obtained during more
volatile periods, especially after a great market shock. Conditional methods are
subject to the event risk due to unexpected changes in market conditions. By
focusing on extreme events, the event risk is also considerably reduced for the
extreme value method.

The extreme value approach is represented in Fig. 2a, in which the proba-
bility pext of a minimal return not exceeding the VaR, is graphically related to
the VaR of the position through the estimated asymptotic distribution of
minimal returns, F asymp

Zn
. The classical approach (illustrated with the historical

method) is represented in Fig. 2b, in which the probability p of a return not
exceeding the VaR, is graphically related to the VaR through the historical
distribution of all returns, F his

R . Using the equation pext � pn to relate the two
probabilities, the VaR given by the estimated asymptotic distribution of min-
imal returns, VaR(F asymp

Zn
, pext), should be close to the VaR given by the his-

torical distribution, VaR(F his
R , p). Any di�erence should be attributed to the

estimation error.

4.1.4. Regulatory capital requirement and assessment of the regulation on market
risks

In April 1995, the Basle Committee (1995) announced that commercial
banks could use the results given by their internal risk-management model to
compute the level of regulatory capital corresponding to their market risks. 19

The Basle Committee o�cially recognized VaR as sound risk-management
practice as it adopted the formula for the level of capital C given by

Ct �Max VaRtÿ1; �M
 

� m� 1

60

X60

j�1

VaRtÿj

!
; �9�

19 A general discussion of capital requirement for ®nancial institutions can be found in Merton

and Perold (1993), Dewatripont and Tirole (1994) and Berger et al. (1995).
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Fig. 2. a and b. The extreme value approach and the classical approach for the computation of

VaR. These two ®gures illustrate graphically the computation of VaR based on two di�erent ap-

proaches: the extreme value approach considering extreme returns only and the classical approach

considering all returns. The estimated asymptotic distribution of minimal returns and the historical

distribution of all returns are taken to implement each approach. Fig. 2a represents the estimated

asymptotic distribution of minimal returns selected from n basic returns of frequency f. The gray

area between the X axis, the curve of the probability density function and a vertical line breaking

the X axis at the point of abscissa VaR (or more exactly ± VaR, as VaR is usually de®ned to be a

positive number) corresponds to the value of the probability 1ÿ pext of a minimal return not ex-

ceeding the VaR. Mathematically, the VaR obtained with the extreme value method, denoted by

VaR�F asymp
Zn

; pext�, is equal to the inverse of the distribution of minimal returns, F asymp
Zn

, evaluated at

the point 1ÿ pext. Fig. 2b represents the histogram of the historical distribution of observed returns

of frequency f. The VaR obtained with the historical method, denoted by VaR(F his
R ; p), is equal to

the �1ÿ p�th quantile of the historical distribution F his
R . Under the assumption of weak dependence

or independence of returns, the probability pext is linked to the probability p by the relation:

pext � pn. The two ®gures use data from the S&P 500 index over the period January 1962±December

1993. The VaR is computed with a holding period of 10 days �f � 10� and a value for the prob-

ability of a 10-day return not exceeding the VaR, equal to 99% �p � 0:99� as de®ned by regulators

(see Basle Committee, 1996a). For the extreme value method extreme 10-day returns are selected

over a semester (n � 12 and T � 120). The value of the probability of an extreme return not ex-

ceeding the VaR is equal to 88.64% �� 0:9912�. The VaR numbers given by the extreme value

method and the historical method are respectively equal to $7.28 and $7.97 for a long position of

$100 in the S&P 500 index.
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where M is a multiplier component whose value is arbitrarily set at 3, m an
additional component whose value, between 0 and 1, depends on the quality of
the prediction of the internal model developed by the institution (see the rec-
ommendation on backtesting issued by the Basle Committee (1996b)), VaRtÿj

the VaR computed by the internal model on day t ÿ j; t ÿ 1 the estimation or
reporting date and t the period of application. The VaR should be computed
on a daily basis, using a 99th percentile, one-tailed con®dence interval and
price shocks equivalent to a holding period of 10 days.

The regulatory capital requirement computed with an internal model is
equal to the maximum of the VaR computed at the reporting time and
�M � m� times the average of the VaR over the last 60 days preceding the
reporting time. With the multiplier component M equal to 3 and the addi-
tional component m assumed to be equal to 0, the regulatory capital re-
quirement is then equal to three times the VaR for internal models based on
unconditional distributions. For a long position of $100 in the S&P 500 index,
the level of capital requirement given by the estimated asymptotic distribution
of minimal returns is equal to $21.84 (the value of the probability pext asso-
ciated with the usual probability value p of 99% is equal to 88.64%). Similarly,
the level of capital requirement given by the historical distribution of all re-
turns is equal to $23.91. By comparison, the lowest 10-day return on the S&P
500 index observed over the period January 1962±December 1993 is equal to
)19.70% (during October 1987). The regulatory capital given by the extreme
value and historical methods would have thus covered all losses observed
during the entire period.

As done in Boulier et al. (1997), the results given by internal models can be
compared with the rules of the standard method de®ned by the Basle Com-
mittee (1996a) and the European Commission (1996). According to the stan-
dard method, the minimum capital for equity position risk must be equal to
12%. This number corresponds to the sum of 8% for the ``general market risk''
of holding a long position in the market as a whole and 4% for the ``speci®c
risk'' of holding a long position in each individual asset of a liquid portfolio.
The results of this article show that regulatory capital levels obtained from the
data themselves, either parametrically by the extreme value method or non-
parametrically by the historical method, are far higher (almost double) than
those obtained by the standard method proposed by the regulators. In terms of
mean waiting period, a loss exceeding the capital given by the standard method
($12) would be observed on average every 25 years, while a loss exceeding the
capital implied by the extreme value method ($21.84) based on Eq. (9) given by
the Basle Committee would be observed on average every 300 years (the values
of the mean waiting period have been obtained using the asymptotic extreme
value distribution). This result suggests that for internal models taking ex-
plicitly into account extreme events, a value of 3 for the multiplier component
M may be too high.
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4.2. The case of a position decomposed on risk factors

The extreme value method presented in Section 3.2 is now applied to the
computation of the VaR of various positions in US and French equity markets.
Estimation results of the asymptotic bivariate distribution of extreme returns
are ®rst presented. VaR results are then discussed.

4.2.1. Estimation of the asymptotic bivariate distribution of extreme S&P 500
and SBF 240 index returns

The bivariate distribution of extreme returns is now estimated for the S&P
500 index and the SBF 240 index using 10-day returns over the period January
1976±December 1993. 20 The estimates of the scale and location parameters
and the tail index (with standard error in parentheses) are respectively equal to
1.423 (0.253), )3.128 (0.283) and )0.393 (0.183) for the distribution of minimal
10-day returns on the S&P 500 index and 2.235 (0.321), )4.174 (0.421) and
)0.142 (0.122) for the distribution of minimal 10-day returns on the SBF 240
index. Similarly for the distribution of maximal returns the estimates are 1.428
(0.229), 3.794 (0.281) and )0.240 (0.162) for the S&P 500 index and 1.357
(0.199), 4.560 (0.256) and )0.172 (0.126) for the SBF 240 index. For both
equity markets the asymptotic distribution of extreme returns is a Fr�echet
distribution (although the Gumbel distribution may not be rejected in some
cases).

The correlation between extreme returns in short or long positions in the
S&P 500 and SBF 240 indexes is estimated from Eq. (5) using the regression
method developed by Tiago de Oliveira (1974). The correlation between min-
imal returns of long positions in both indexes is equal to 0.418, the correlation
between maximal returns of short positions in both indexes to 0.064, the cor-
relation between minimal returns of a long position in the S&P 500 index and
maximal returns of a short position in the SBF 240 to 0.185, and the corre-
lation between maximal returns of a short position in the S&P 500 index and
minimal returns of a long position in the SBF 240 to 0.095. The historical
correlation computed with all returns is equal to 0.381. It is thus slightly lower
than the correlation between minimal returns but much higher than the cor-
relation between maximal returns.

4.2.2. VaR of long, short and mixed positions in S&P 500 and SBF 240 indexes
Three distributions are considered: the historical distribution (used as a

benchmark), the extreme value distribution and the normal distribution.

20 Low frequency returns are used here to avoid the problem of non-synchronous trading e�ects

for stocks traded in di�erent time-zones (see Hamao et al., 1990 for a discussion of correlation and

spillover e�ects).
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Long, short and mixed positions are constructed using the two basic in-
vestments (the S&P 500 index and the SBF 240 index) with di�erent weights
in these investments. The foreign exchange risk is assumed to be fully
hedged. A position is described by the type of position in each index (long
or short) and by the weights �w; 1ÿ w� in each index. When the parameter
w is equal to 0% or 100%, a position is taken in one market only. In this
case, any di�erence between the VaR computed with the extreme value or
normal distributions and the VaR computed with the historical distribution,
can be attributed to a ``tail error'' coming from a poor description of the
distribution tails by the model. This error is likely due to estimation risk in
the case of the extreme value distribution and model risk for the normal
distribution. When the parameter w is between 0% and 100%, a position is
taken in both markets and the correlation plays an important role. In this
case, any di�erence between the VaR computed with the asymptotic extreme
value distribution or the normal distribution and the VaR computed with
the historical distribution can be attributed either to a tail error or to a
correlation error coming from a poor description of the correlation between
risk factors by the model (the risk-aggregation formula may also be mis-
speci®ed).

Empirical results of VaR are reported in Table 5 for long positions (Panel
A), for short positions (Panel B) and for mixed positions (Panels C and D). For
example, for a long equally weighted (w� 50%) position, the VaR is equal to
$7.62 with the historical distribution, $7.39 with the extreme value distribution,
and $3.80 with the normal distribution. The VaR number obtained by the
extreme value distribution has been computed as follows:

��������������������������������������������������������������������������������������������������������������������������������
0:50 � 7:82� �2 � 0:50 � 9:69� �2 � 2 � 0:418 � 0:50 � 0:50 � 7:82 � 9:69

q
;

where 0.50 represents the value of the weights of the portfolio in each index,
7.82 and 9.69 the VaR numbers of long positions in the S&P 500 index and in
the SBF 240 index respectively, and 0.418 the correlation between minimal
returns in the two indexes during extreme market conditions. The historical
VaR is thus slightly underestimated by the extreme value method (a di�erence
of )3.03%) and largely underestimated by the variance/covariance method (a
di�erence of )50.10%). Similarly, for a short equally weighted position in both
indexes, the VaR is equal to $5.74 with the extreme value distribution, $4.50
with the normal distribution and $6.33 with the historical distribution. The
historical VaR is underestimated by the extreme value method (a di�erence of
)9.25%) and largely underestimated by the variance/covariance method (a
di�erence of )28.84%). Note from Table 5 that the historical VaR is some-
times underestimated and sometimes overestimated by the extreme value
method while it is always largely underestimated by the variance/covariance
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method. In most cases the extreme value method gives similar results to the
historical method and always performs better than the variance/covariance
method.

Table 5

VaR computed for long, short and mixed positions in the S&P 500 and SBF 240 Indexesa

Position weights Historical Extreme value Normal

(A) Long positions in the S&P 500 and SBF 240 Indexes

(100, 0) 7.67 7.82 (+1.96) 3.13 ()59.19)

(75, 25) 7.14 7.22 (+1.14) 3.20 ()55.15)

(50, 50) 7.62 7.39 ()3.03) 3.80 ()50.10)

(25, 75) 9.06 8.28 ()8.64) 4.73 ()47.75)

(0, 100) 11.01 9.69 ()11.99) 5.84 ()46.96)

(B) Short positions in the S&P 500 and SBF 240 Indexes

(100, 0) 8.74 7.73 ()11.56) 3.90 ()55.38)

(75, 25) 7.41 6.25 ()15.59) 3.90 ()47.40)

(50, 50) 6.33 5.74 ()9.25) 4.50 ()28.84)

(25, 75) 7.96 6.43 ()19.16) 5.52 ()30.62)

(0, 100) 8.97 8.02 ()10.59) 6.77 ()24.53)

(C) Long position in the S&P 500 Index and short position in the SBF 240 Index

(75, 25) 5.40 6.35 (+17.73) 3.01 ()44.28)

(50, 50) 4.63 5.83 (+26.00) 3.84 ()16.88)

(25, 75) 6.71 6.48 ()3.41) 5.20 ()22.46)

(D) Short position in the S&P 500 Index and long position in the SBF 240 Index

(75, 25) 6.65 6.36 ()4.34) 3.31 ()50.16)

(50, 50) 4.72 6.30 (+33.53) 3.56 ()24.42)

(25, 75) 5.65 7.58 (+34.25) 4.52 ()19.99)

a This table gives the VaR of market positions in the S&P 500 index (US equity market) and in the

SBF 240 index (French equity market) with various position weights �w; 1ÿ w� as indicated in the

®rst column. VaR numbers are computed for long positions (Panel A), short positions (Panel B)

and mixed positions (Panels C and D). The VaR is computed for a position of $100, or equiv-

alently, the VaR is expressed as the percentage of the value of the position. Three statistical

distributions are used to compute the VaR: the historical distribution (used as a benchmark), the

extreme value distribution and the normal distribution. A fully aggregated position is considered

to compute the VaR with the historical distribution. In this case the history of returns on the

position is repeated whenever the position weights change. To compute the VaR with the extreme

value distribution and the normal distribution the decomposition of the position on a given set of

risk factors (here the two stock indexes) is considered. In this case a risk-aggregation formula is

used to relate the VaR of the position to the VaR of long or short positions in stock indexes, the

correlation between the stock indexes and the position weights. The percentage di�erence between

the VaR based on the historical distribution and the VaR based on the extreme value distribution

or the normal distribution is reported in parentheses next to the VaR numbers. The VaR is

computed with a holding period of 10 days �f � 10� and a value for the probability of a 10-day

return not exceeding the VaR equal to 99% �p � 0:99� as de®ned by regulators (see Basle Com-

mittee, 1996a). For the extreme value method extreme 10-day returns are selected over a semester

(n � 12 and T � 120). The value of the probability of an extreme return not exceeding the VaR is

equal to 88.64% �� 0:9912�. All distributions are estimated over the period January 1976±

December 1993.
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5. Conclusion

In this article, I propose a new approach to computing the VaR of a market
position. This approach considers extreme values and is implemented using a
parametric method based on extreme value theory. This theory allows one to
take into account explicitly the rare events contained in the distribution tails.
As shown by the theoretical results, the general form of the asymptotic dis-
tribution of extreme returns is consistent with many statistical models for the
process of returns (the normal distribution, the mixture of normal distribu-
tions, the Student distribution, the family of stable Paretian distributions, the
class of ARCH processes...). The extreme value method presents three main
advantages over classical methods. First, as the extreme value method is
parametric, out-of-sample VaR computations are possible for high probability
values. With the historical method the VaR cannot be computed for high
probability values because of the limited number of observations. Second, as
the extreme value method does not assume a particular model for returns but
lets the data speak for themselves to ®t the distribution tails, the model risk is
considerably reduced. With the normal distribution or any given distribution
of returns, the distribution tails may be badly ®tted. Third, as the extreme value
method focuses on extreme events, the event risk is explicitly taken into ac-
count. With conditional distributions considering all returns such as the
GARCH or EWMA processes, large unexpected market shocks are ignored.
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