Extreme value study of the price-volume relationship
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Abstract

We study the relationship between market prices and trading volume by focusing on periods of market stress such as booms and crashes. We apply extreme value theory in order to model the dependence in the tails of the joint distribution. Empirically, with data from the S&P 500 index, we find a breakdown of the price volume relationship: the extreme correlation between return and (adjusted) volume increases as we consider more volatile periods.
Keywords: extreme value theory, market booms, market crashes, peak over threshold method, volume.
JEL classification numbers: G15, F3.

1. Introduction

This paper is in line with Balduzzi, Kallal and Longin (1996), which first study the relationship between returns and volume during market crashes. While Balduzzi et al (1996) used standard regression techniques in order to analyze extreme events, this paper uses more appropriate techniques such as extreme value theory as proposed by Longin and Solnik (2001).
This paper is organized as follows: Section 2 presents the statistical model based on extreme value theory, Section 3 focuses on the estimation of the extreme correlation coefficient, Section 4 presents the empirical results and section 5 concludes.
2. Statistical model
Extreme value theory involves two modeling aspects: the tails of the marginal distributions and the dependence structure of extreme observations. This presentation draws from Longin and Solnik (2001).
2.1 The univariate Case: modeling of the distribution tails

Let us call R the return on a portfolio and FR the cumulative distribution function of R. The lower and upper endpoints of the associated density function are denoted by (l, u). For example, for a variable distributed normally, l=-( and u=+(. In this paper, extreme returns are defined in terms of exceedances with reference to a threshold denoted by . For example, positive -exceedances correspond to all observations of R greater than the threshold  (results for negative exceedances can be deduced from those for positive exceedances by consideration of symmetry). A return R is higher than  with probability p and lower than  with probability 1-p. The probability p is linked to the threshold  and the distribution of returns FR by the relation p=1-FR( We focus on the case (R>) which defines the (right) tail of the distribution of returns.

The cumulative distribution of (-exceedances, denoted by 
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 and equal to (FR(x)-FR(())/(1-FR(()) for x>(, is exactly known if the distribution of returns FR is known. However, in most financial applications, the distribution of returns is not precisely known and, therefore, neither is the exact distribution of return exceedances. For empirical purposes, the asymptotic behavior of return exceedances needs to be studied. Extreme value theory addresses this issue by determining the possible non-degenerate limit distributions of exceedances as the threshold  tends to the upper point u of the distribution. In statistical terms, a limit cumulative distribution function denoted by  satisfies the following condition: 
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 Balkema and De Haan (1974) and Pickands (1975) show that the generalized Pareto distribution (GPD) is the only non-degenerate distribution which approximates the distribution of return exceedances 
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where (, the dispersion parameter, depends on the threshold ( and the distribution of returns FR, and , the tail index, is intrinsic to the distribution of returns FR (the + operator gives the positive part of the expression in parentheses).

The tail index  gives a precise characterization of the tail of the distribution of returns. Distributions with a power-declining tail (fat-tailed distributions) correspond to the case >0, distributions with an exponentially-declining tail (thin-tailed distributions) to the case =0, and distributions with no tail (finite distributions) to the case <0. 

For a particular return distribution, the parameters of the limit distribution can be computed (see Embrechts, Klüppelberg and Mikosch (1997)). For example, the normal and log-normal distributions commonly used in finance lead to a GPD with =0. The Student-t distributions and stable Paretian laws lead to a GPD with >0 and the uniform distribution belongs to a GPD with <0. The extreme value theorem has also been extended to processes which are not i.i.d. Leadbetter, Lindgren and Rootzén (1983) consider various processes based on the normal distribution: autocorrelated normal processes, discrete mixtures of normal distributions and mixed diffusion jump processes. All have thin tails so that they lead to a GPD with =0. De Haan, Resnick, Rootzén and De Vries (1989) show that if returns follow the GARCH process, then the extreme return has a GDP with <0.5.

To summarize the univariate case, extreme value theory shows that the distribution of return exceedances can only converge toward a generalized Pareto distribution. This result is robust as it is also obtained for non-i.i.d. return processes commonly used in finance. Hence, for a given threshold, the distribution tail in the univariate case is perfectly described by three parameters: the tail probability, the dispersion parameter and the tail index.

2.2 The bivariate case: modeling of the tail dependence
Let us consider a bidimensional vector of random variables denoted R=(R1, R2). Bivariate return exceedances correspond to the vector of univariate return exceedances defined with a bidimensional vector of thresholds (=((1, (2). As for the univariate case, when the return distribution is not exactly known, we need to consider asymptotic results. The possible limit non-degenerate distributions 
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1)  Its univariate marginal distributions 
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 are generalized Pareto distributions.

2)  There exists a function called the dependence function denoted by 
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, which maps from (2 into (, and satisfies the following condition:
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Like in the univariate case, the generalized Pareto distribution plays a central role. However, unlike the univariate case, the multivariate asymptotic distribution is not completely specified as the shape of the dependence function 
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 is not known.

When the components of the multivariate distribution of extreme returns are asymptotically independent, the dependence function 
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where 
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 Actually, asymptotic independence of extreme returns is reached in many cases. Of course, when the components of the return distribution themselves are independent, exact independence of extreme returns is obtained. But more surprisingly, asymptotic independence is often reached when the components of the return distribution are not independent. An important example is the multivariate normal distribution (see Galambos (1978, pp 257-58) and Embrechts, McNeil and Straumann (1998)).

B. 1     Asymptotic independence and multivariate normality
If all correlation coefficients between any two components of a multivariate normal process are different from ±1, then the return exceedances of all variables tend to independence as the threshold used to define the tails tends to the upper endpoint of the distribution of returns (+( for the normal distribution). In particular, the asymptotic correlation of extreme returns is equal to zero. For example, considering a bivariate normal process with standard mean and variance and a correlation of 0.80, the correlation is equal to 0.48 for return exceedances one standard deviation away from the mean, 0.36 for return exceedances two standard deviations away from the mean, 0.24 for return exceedances three standard deviations away from the mean and 0.14 for return exceedances four standard deviations away from the mean. It goes to zero for extreme returns. 

At first, the result of asymptotic independence may seem counterintuitive and at odds with the traditional view of bivariate normality.
 It all depends on how conditioning is conducted. A slight difference is introduced by conditioning on values in the two series, as done in extreme value theory, or on values in a single series, as done in the introduction of this paper and in most empirical studies. But the major source of difference comes from the conditioning on absolute values (two-sided) versus the conditioning on signed values (one-sided). If we condition on the absolute value of realized returns, the conditional correlation of a bivariate normal distribution trivially increases with the threshold, as mentioned in the introduction. As the normal distribution is symmetric, the truncated distribution retains the same mean as the total distribution. But a large positive (respectively negative) return in one series tends to be associated with a large positive (respectively negative) return in the other series, so the estimated conditional correlation is larger than the "true" constant correlation. Conditional correlation increases with the threshold (see also Forbes and Rigobon (1998) and Boyer, Gibson and Loretan (1999)). Here, we condition on signed extremes (e.g. positive or negative). The mean of the truncated distribution is not equal to the mean of the total distribution. As indicated above, the conditional correlation of a multivariate normal distribution decreases with the threshold and reaches zero for extreme returns. A false intuition would be that extreme returns in two series appear highly correlated as they are large compared with the mean of all returns. Extreme value theory says that two extreme returns are not necessarily correlated as they may not always be large compared with the mean of extreme returns.
B.2      The General Case.

For the general case with asymptotically-dependent components for the multivariate distribution of extreme returns, the form of the dependence function is not known, and it has to be modeled. 
 A model commonly used in the literature is the logistic function proposed by Gumbel (1961).
  The dependence function denoted by Dl is given by:
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where parameter ( controls the level of dependence between extreme returns. In the bivariate case (q=2), the correlation coefficient  of extremes is related to the coefficient ( by: =1-(2 (Tiago de Oliveira, 1973). The special cases (=1 and (=0 correspond respectively to asymptotic independence (=0) and total dependence (=1).

While arbitrary, the logistic model used in engineering studies presents several advantages: it includes the special cases of asymptotic independence and total dependence, and it is parsimonious as only one parameter is needed to model the dependence among extremes. An attractive feature of the methodology is that the asymptotic tail distribution is characterized by very few parameters regardless of the actual conditional distribution.

To summarize the multivariate case, extreme value theory shows that the distribution of extreme returns can only converge toward a distribution characterized by generalized Pareto marginal distributions and a dependence function. The shape of this function is not well-defined. Consistent with the existing literature, we will use the logistic function to model the dependence between extreme returns of different markets. The case where returns are multivariate normal leads to a limit case of the logistic function where the asymptotic correlation of extreme returns is equal to zero. We will estimate the dependence function and test whether the correlation of extreme returns is equal to zero.

3.  Correlation of extreme returns: estimation procedure

The estimation method for the parameters of the model is presented.

3.1 Modeling of the tails of the marginal distributions

The model presented in the previous section is multivariate. In the empirical study, we deal with bivariate models. This choice is justified by a theoretical result which demonstrates that multivariate independence can be tested using bivariate pairs of variables (see Tiago de Oliveira (1962) and Reiss (1989, pp 234-237)).

Following Davison and Smith (1990) and Ledford and Tawn (1997), the limiting result about the distribution of exceedances presented in Section I is taken to derive a model of the tails of each marginal distribution. Considering return exceedances defined from returns R1 and R2 in two markets with thresholds (1 and (2, the tail of the distribution of each return Ri denoted by 
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which simply expresses that a return Ri either does not belong to the tail with probability 1-pi or is drawn from the limit univariate distribution 
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 of positive return (i-exceedances with probability pi. In other words, for a return which does not exceed the threshold (i the only relevant information it conveys to the model is that it occurs below the threshold, not its actual value. In the construction of the likelihood function, a return Ri below (i is considered as censored at the threshold.

3.2 Modeling of the dependence structure

Following Ledford and Tawn (1997), the dependence function associated with the distribution of returns FR is modeled with the logistic function Dl given by equation (4). The model 
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 of the bivariate distribution of return exceedances is given by:
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For given thresholds (1 and (2, the bivariate distribution of return exceedances is then described by seven parameters: the tail probabilities (p1 and p2), the dispersion parameters ((1 and (2) and the tail indexes ((1 and (2) for each variable, and the dependence parameter of the logistic function (() or equivalently the correlation of extreme returns ((). The parameters of the model are estimated by the maximum likelihood method. Details of the construction of the likelihood function are given in Appendix 2.

4. Empirical results

4.1 Data
Data used in the empirical study are from the daily returns and volume of the SP 500 index for the period ranging from January 3, 1956 - July 28, 2006.
4.2 Adjustment procedure for return and volume
As volume is a non-stationary random variable, it is adjusted according to the model developed by Gallant et al.
For returns, we use an (5)-EGARCH-M(1) model, which takes into account the day effects (a dummy variable for each working day of the week),the month effect (a dummy variable for the months from February to November), the end-of-the-year effect (a dummy variable for time-periods January 1-7, January 8-31, December 1-22 and December 23-31), the gaps and the time trends (t, t²) for the volume variable only.
The equations for the mean are given by:
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The equations for the variance are given by:
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4.3 Results
Extreme value theory is applied to the residuals of the equations given in 4.2. Results are presented in Table 1 for the univariate distribution of return exceedances (both negative and positive) and volume exceedances and in Table 2 for the bivariate distribution of negative return exceedances and volume exceedances, and for the bivariate distribution of positive return exceedances and volume exceedances.

We focus on the extreme correlation between return and volume. Under the hypothesis of normality of the residuals, the extreme correlation should converge towards zero as the threshold used to compute the extremes increases.

Empirical results show that the extreme correlation between return and volume tends to increase instead of decreasing toward zero. This result is illustrated in Figure1.
5. Conclusion
The main result of this paper is that the extreme correlation between return and volume increases as we consider more volatile periods. From an economic point of view, the theory of misinterpreted trades (see Donaldson and Uhlig (1990) and Genotte and Leland (1990)) seems inconsistent with our empirical findings.
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Table 1: Estimation of the Univariate Distribution of Return and Volume Exceedances.

Panel A: Negative return exceedances

	Probability p
	Threshold (
	Tail index ξ
	Dispersion σ

	1
	-2,342
	0,417
	0,56

	2
	-1,899
	0,296
	0,56

	3
	-1,684
	0,286
	0,50

	4
	-1,526
	0,263
	0,49

	5
	-1,404
	0,233
	0,49

	10
	-0,974
	0,132
	0,54

	20
	-0,564
	0,091
	0,56

	30
	-0,307
	0,060
	0,58

	50
	0,036
	0,026
	0,63


Panel B: Positive return exceedances

	Probability p
	Threshold (
	Tail index ξ
	Dispersion σ

	1
	2,400
	0,047
	0,81

	2
	1,966
	0,136
	0,64

	3
	1,716
	0,136
	0,61

	4
	1,541
	0,129
	0,59

	5
	1,420
	0,143
	0,56

	10
	0,997
	0,097
	0,56

	20
	0,613
	0,084
	0,54

	30
	0,382
	0,065
	0,55

	50
	0,036
	-0,005
	0,63


Panel C: Volume exceedances

	Probability p
	Threshold (
	Tail index ξ
	Dispersion σ

	1
	2,986
	0,352
	0,57

	2
	2,506
	0,247
	0,59

	3
	2,288
	0,260
	0,52

	4
	2,126
	0,239
	0,50

	5
	2,002
	0,214
	0,50

	10
	1,677
	0,197
	0,45

	20
	1,363
	0,160
	0,42

	30
	1,183
	0,139
	0,42

	50
	0,940
	0,089
	0,44


Note: this table gives the maximum likelihood estimates of the parameters of the bivariate distribution of return and volume exceedances (Panel A for negative return exceedances, Panel B for positive return exceedances and Panel C for volume exceedances). Exceedances are defined with a given probability p. The probability levels range from 1% to 50%.Three parameters are estimated: the threshold (, the dispersion parameter ( and the tail index . Data are from the daily returns and volume of the SP 500 index for the period ranging from January 3, 1956 - July 28, 2006.

Table 2: Estimation of the bivariate distribution of return and volume exceedances.

Panel A: Negative return exceedances

	Thresholds
	Parameters of the model

	
	pR
	σR
	ξR
	pV
	σV
	ξV
	αR/V

	(-5,00;3,00)
	0,0008
	1,060
	0,830
	0,010
	0,560
	0,350
	0,8786

	(-2,48;1,98)
	0,009
	0,509
	0,261
	0,053
	0,489
	0,165
	0,9400

	(-1,64;1,66)
	0,032
	0,526
	0,254
	0,105
	0,435
	0,194
	0,9561

	(-0,82;1,35)
	0,134
	0,501
	0,199
	0,205
	0,416
	0,156
	0,9782

	(0,00;1,05)
	0,502
	0,580
	0,088
	0,392
	0,400
	0,177
	0,9946


Panel B: Positive return exceedances

	Thresholds
	Parameters of the model

	
	pR
	σR
	ξR
	pV
	σV
	ξV
	αR/V

	(0,03;1)
	0,500
	0,630
	-0,005
	0,413
	0,430
	0,106
	0,9026

	(0,86;1,35)
	0,130
	0,559
	0,087
	0,205
	0,420
	0,160
	0,8970

	(1,69;1,66)
	0,032
	0,602
	0,140
	0,105
	0,430
	0,219
	0,8888

	(2,53;1,98)
	0,008
	0,873
	0,015
	0,053
	0,488
	0,225
	0,8986

	(4,5;2,98)
	0,001
	0,481
	0,365
	0,010
	0,573
	0,369
	0,849

	(5,00;3,00)
	0,0003
	0,740
	0,620
	0,996
	0,549
	0,392
	0,7965


Note: this table gives the maximum likelihood estimates of the parameters of the bivariate distribution of return and volume exceedances (Panel A for negative return exceedances, Panel B for positive return exceedances and Panel C for volume exceedances). Exceedances are defined with a given probability p. The probability levels range from 1% to 50%.Three parameters are estimated: the threshold (, the dispersion parameter ( and the tail index . Data are from the daily returns and volume of the SP 500 index for the period ranging from January 3, 1956 - July 28, 2006.
Figure 1: Extreme correlation of the bivariate distribution of return and volume exceedances.

[image: image27.emf]0


0.05


0.1


0.15


0.2


0.25


0.3


0.35


0.4


-6


-4


-2


0


2


4


6


"ro.txt" using 1:3




0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-6 -4 -2 0 2 4 6

"ro.txt" using 1:3


� EMBED Equation.3 ���








� PhD student, Whatron PHD Program. E-mail : �HYPERLINK "mailto:boualam@wharton.upenn.edu"�boualam@wharton.upenn.edu�.


� Professor of Finance, Department of Finance, ESSEC Graduate Business School, Avenue Bernard Hirsch B.P. 50105, 95021 Cergy-Pontoise Cedex, France. E-mail: �HYPERLINK "mailto:longin@essec.fr"�longin@essec.fr�. Web: �HYPERLINK "http://www.longin.fr"�www.longin.fr�.





� See Ledford and Tawn (1997). A general presentation of multivariate extreme value theory can be found in Galambos (1978) and Resnick (1987). Specific results for the bivariate case are given in Tawn (1988).


� We are grateful to an anonymous referee for providing useful insights on this issue.


� The properties of the asymptotic distribution can be worked only out in very special cases.


� See also Tawn (1988) and Straetmans (1998).
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