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means that large shocks are less persistent in
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is shown that the GARCH process for informa-
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complete test of the model.
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This article provides theoretical insight into the threshold effect ob-
served in the expected variance of stock returns. The threshold effect
means that large shocks are less persistent in volatility than small
shocks. In other words, after a big surprise market volatility increases,
but not by much, and comes back quickly to its long-term level. Us-
ing a multiperiod model similar to Admati and Pfleiderer (1988) and
inspired by Kyle (1985, section 2), it is shown that asymmetry of in-
formation among market participants is a source of the nonlinearity
in the expected variance of risky asset price changes.

This article focuses mainly on the behavior of the variance of mar-
ket price changes. More precisely, one is interested in the expected
variance conditional on market participants’ information. Engle (1982)
introduced the statistical ARCH (for autoregressive conditional het-
eroscedastic) process to model the time-varying property of the sec-
ond moment of a time series; the expected variance of future returns
depends on the squared value of past innovations. Bollerslev (1986)
generalized ARCH into GARCH, which also includes past variance for
predicting future variance. Several explanations for these ARCH and
GARCH effects can be put forth: the quality and quantity of infor-
mation, the influence of economic variables, and the trading process
itself. This class of statistical model was successfully applied to finan-
cial assets such as stocks, interest rates, and currency exchange rates.1

ARCH and GARCH processes model the positive correlation observed
in the size of returns and the clustering of large movements in prices.
However, the failure of these models to take into account the influ-
ence of the sign or the size of past returns led to the development of
asymmetric and threshold GARCH models. Volatility feedback mod-
eled by Campbell and Hentschel (1992) and an argument based on
the leverage effect discussed in Black (1976) can explain the sign ef-
fect (which means that bad news has a greater impact on volatility
than good news). Until now, however, no theoretical work has been
done for the threshold effect in the expected variance.

Classic and threshold GARCH models and characterizations of the
threshold effect are reviewed in Section 1. Section 2 presents the
theoretical model. The market environment is described as follows:
trading for a single risky asset takes place in a centralized market at
discrete intervals; investors are differentiated according to their mo-
tive for trading: liquidity or information. Liquidity-motivated investors
trade for reasons exogenous to information about the firm; liquidity
traders have no choice with regard to the timing of their trades, and
their asset demand is completely exogenous. Information-motivated

1 A review of the theory and empirical evidence of GARCH effects can be found in Bollerslev,
Chou, and Kroner (1992).
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investors trade to benefit from private information about the firm’s
value; informed traders maximize their expected trading profit. The
information process is assumed to be a GARCH. This reflects the fact
that information tends to arrive in waves. The specification of the in-
formation process is different from that in the articles based on the
seminal model proposed by Kyle (1985), which assume a constant
variance for information as in Back (1993) and Foster and Viswanathan
(1993b). A competitive market maker absorbs the net demand for the
risky asset at an efficient price. It is shown that there is a unique linear
Nash equilibrium where informed traders take into account the strat-
egy of the market maker, and vice versa. In this model, both classes of
market participants explicitly take into account the time-varying be-
havior of the variance of information by computing their expectations
and forming their strategies.

In Section 3, it is shown that the variance of equilibrium market
price changes also exhibits a time-varying behavior. However, the
process for price changes and the process for information are differ-
ent. The difference is due to the presence of informed traders. When
the number of informed traders is exogenous and constant over time,
a GARCH process for market price changes is still obtained, but the
degree of persistence of the latest informational shock in market vari-
ance depends on the number of informed traders. For a given number
of informed traders, however, large shocks are as persistent as small
shocks.

In Section 4, the case of endogenous acquisition of information is
considered. When information is acquired at a cost, and the num-
ber of informed traders is endogenously determined, the degree of
persistence depends on the size of the shocks: large shocks are less
persistent than small shocks. The GARCH process for information is
transformed into a TARCH process (for threshold GARCH) for market
price changes.

Working with assumptions on information flows, the model has a
much wider array of implications than was first derived from statistical
models. In Section 5, it is shown that trading volume and market
liquidity also present a time-varying behavior with thresholds. Cross-
restrictions with market variance are also offered for testing the model.

1. The Threshold Effect in Expected Variance

1.1 GARCH and threshold GARCH models
The time-varying behavior of the expected variance denoted by ht

can be written as

ht ≡ Vart−1(rt ) = α0 + F (et−1)+ β1ht−1, (1)
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where the variable rt represents the asset return, the variable et is the
error term defined by rt − Et−1(rt ), and the function F is the relation
between the latest innovation and the expected variance of future re-
turns. Parameters α0 and β1, and function F have to be empirically
estimated. The innovation et is assumed to be drawn from a condi-
tional normal distribution with zero mean and variance ht .

The GARCH(1,1) model, which is most used in empirical studies,
corresponds to the case F (et−1) = α1e2

t−1. Coefficient α1 represents the
degree of persistence of the latest innovation in the expected variance
of future returns. In the GARCH model, the degree of persistence is
constant and independent of the size of the past shock et−1. Small
and large shocks are equally persistent in expected variance.

Threshold models have been developed to take into account the
effect of the size on expected volatility. Basically, a more sophisti-
cated function F is used in Equation (1). Different models have been
proposed in the literature; they are listed by category in Table 1. All
these models work with the price process but differ in the way the
nonlinearity is captured by incorporating the past price innovations
in volatility. Although market prices are likely to be informative, the
role of information itself and market participants’ trading decisions as
a primary source of market movements should be emphasized and
modeled.

A useful concept for a better understanding of these models is
the News Impact Curve (NIC) proposed by Friedman and Laibson
(1989) and Engle and Ng (1993). The NIC graphically represents the
function F and shows how new information et−1 affects the next
period variance ht , holding constant the information dated t − 2 and
earlier. The slope of the NIC is equal to the degree of persistence α,
empirically estimated. The steeper the NIC, the higher the persistence
of the past shock in the expected variance. For the GARCH model, the
NIC is a straight line and the slope of the curve is equal to the estimate
of the coefficient α1. A threshold effect corresponds to a nonconstant
degree of persistence and thus to a nonlinear NIC.

1.2 Characterizations of the threshold effect in expected
variance

The influence of extreme shocks and the dynamics of future expected
variance characterize the threshold effect. The influence of the largest
shocks is reflected by a negative relation between the extreme move-
ments and the expected variance given by a GARCH model. In Ap-
pendix A, the estimation of a GARCH(1,1) model is reported for high-
frequency data (half-hour price changes in the Standard & Poor’s 500
index futures traded on the Chicago Mercantile Exchange over the
period 1986 to 1990). The three coefficients of the variance equation
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are all significant. For example, the degree of persistence of the past
shock α1 is equal to 0.089 with a standard error of 0.002. With the time
series of the expected variances given by this model, a series of stan-
dardized innovations vt equal to et/

√
ht is constructed. If the GARCH

model is well specified, then the variable vt should not depend on
variables known at time t − 1, in particular it should not depend on
the size of the past innovation. To test this proposition, Engle and Ng
(1993) suggested the following regression:

v2
t = a + b10D10

t−1 + b90D90
t−1 + ut , (2)

where D10 and D90 are dummy variables that are loaded if the past in-
novation et−1 is in the first and last decile, respectively, of the uncondi-
tional distribution. No threshold effect corresponds to the null hypoth-
esis: b10 = 0.00 and b90 = 0.00. Empirically one finds: b10 = −0.585
(t = −9.70) and b90 = −0.269 (t = −6.61). After a large shock, volatil-
ity is significantly lower than that predicted by the GARCH model.

This suggests the estimation of a TARCH model to capture the non-
linearity in the variance. A model developed by Longin and Solnik
(1995) is used here. The new equation for the conditional variance is
given as follows:

ht ≡ Vart−1(rt ) = α0 + α1e2
t−1 + γ1Dt−1(e

2
t−1 − σ 2)+ β1ht−1, (3)

where the variable D is a dummy, which takes into account the size
of the past innovation; Dt−1 is equal to 1 if the latest squared shock
e2

t−1 is greater than the unconditional variance of returns σ 2 taken as
a threshold, and 0 otherwise.2 The GARCH model correspond to the
constrained case: γ1 = 0. A threshold effect corresponds to a negative
value for the parameter γ1 which measures the difference in persis-
tence between small and large shocks. The estimation of the TARCH
model reported in Appendix A shows that there is a nonlinearity in
the expected variance and that this nonlinearity is well captured by
introducing a threshold in the variance equation (although the true
process may not be exactly a threshold process).3 The degree of per-
sistence for small shocks measured by α1 is equal to 0.128, compared
with 0.089 for the GARCH model. The difference in persistence be-

2 σ 2 corresponds to the unconditional mean of the random squared return e2
t−1. A shock et−1 is

classified as a large (small) shock if e2
t−1 stands above (below) its mean σ 2. If σ 2 is exactly known, it

is an exogenous threshold and maximum likelihood estimators of model parameters are efficient.
The choice of σ 2 as a threshold provides a reliable statistic for γ T

1 since this coefficient is estimated
with more than 33% of observations (assuming the conditional normality for the distribution of
returns). If σ 2 is not known exactly, but has to be estimated from data, model parameters may
not be estimated efficiently.

3 A better estimate of the actual variance (and a better fit of the actual NIC) could be obtained by
estimating a TARCH model with several thresholds denoted by 11,12, . . . , 1I−1,1I . The variance
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Figure 1
News impact curves (Standard & Poor’s 500 index futures, 1986–1990)
This figure represents the NIC linking the past squared innovation in the process of price changes
to the expected variance obtained from a GARCH model (dashed line) and a TARCH model (solid
line). The dotted line corresponds to the unconditional variance. The slope of the NIC is equal
to the degree of persistence of the past innovation in the variance model. Data used are intraday
price changes in the S&P 500 futures index for the period 1986 to 1990.

tween small and large shocks measured by γ1 is significantly negative:
−0.091 with a t -ratio equal to −10.57. These estimates allow one to
compare the different degrees of persistence: 0.128 for small shocks
and 0.037 for large shocks. A likelihood ratio test confirms the im-
portance of the threshold effect: with a statistic equal to 169.12 with
a p-value less than 0.001, the GARCH model is strongly rejected in
favor of the TARCH model [a result similar to those of Friedman and
Laibson (1989) and Friedman (1992)]. This is illustrated in Figure 1.

Another characterization of the threshold effect can be seen in terms
of the dynamics of future expected variance. As the variance process is
stationary, shocks to volatility (although persistent) are not permanent.

equation would be

ht = α0 + α1e2
t−1 +

I∑
i=1

γiDi,t−1(e
2
t−1 −1i)+ β1ht−1, (3)

where Di are dummy variables; Di,t−1 is equal to 1 if the past squared shock e2
t−1 is greater than the

threshold 1i . The parameters γi measure the difference in persistence between shocks of different
sizes. Equation (3) is a special case of Equation (3′) corresponding to I = 1 and 11 = σ 2.
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After a shock, volatility comes back to its long-term level, that is,
there is mean reversion in volatility. For a GARCH model, all shocks
to volatility decay geometrically at the rate (α1 + β1). For a TARCH
model, between time t and time t + 1, small and large shocks decay
at different rates: (α1 + β1) and (α1 + γ1 + β1). Empirically, the decay
rate for small shocks is equal to 0.994 and near unity; this suggests
that small price movements are associated with the permanent part
of the variance process. As the decay rate for large shocks is equal to
0.903, large price movements could be associated with the transitory
part of the process. When a threshold effect follows a large shock, one
expects volatility of future returns to come back quickly to its long-
term level [a result also observed in the implied volatility in option
prices by Schwert (1990) and Engle and Mustapha (1992)].

Most of the models described in this section apply a statistical model
directly to stock returns. Although some statistical assumptions are al-
ways necessary, a more satisfactory approach would require a statis-
tical model for other variables (information, dividend, interest rates,
etc.), with the behavior of stock prices emerging from the solution
of an economic model. This article takes a step in that direction by
specifying first the process of information, and then by deriving the
process of market prices. The next section presents a theoretical model
for which the effects discussed above can be included. Moving the
assumption of the GARCH process back from prices to information
also allows one to address a much wider array of implications (such
as the relation between market volatility, trading volume, and market
liquidity) than those first explored in the statistical literature.

2. The Basic Model

The trading environment, the information process, and the market
participants are described first. In Proposition 1, it is shown that there
is a unique linear Nash equilibrium.

2.1 Trading environment and information
The market environment is modeled as follows: trading for a single
risky asset takes place in a centralized market at discrete intervals.
There are T trading dates. At time T , the shareholders receive the
liquidation value of the asset. The fundamental value of the asset V
is exogenously determined and modeled as follows:

VT = V0 +
T∑

t=1

δt , (4)
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where (δt )t=1...T are random variables that represent the changes in
the equilibrium value V over time. Each variable δ is conditionally
normally distributed with zero mean; δt may be considered as a piece
of information about the value of the asset. The variance of informa-
tion, which is allowed to vary over time, is explicitly modeled. The
expected variance of δt , denoted by σ 2

t , depends on the value of the
most recent information δt−1, and on past variance σ 2

t−1. A parsimo-
nious representation is the GARCH(1,1) model:4

σ 2
t ≡ Vart−1(δt ) = α0 + α1δ

2
t−1 + β1σ

2
t−1. (5)

Information about the asset’s payoff enters the model from a pub-
lic source and from a private signal observed by some participants.
Information is gradually revealed to all market participants. The piece
δt is revealed to the public between time t − 1 and time t . However,
some traders—called hereafter informed traders—know information
δt just before time t−1 and can use this information to their advantage
at the trading session at time t − 1. Private information is short lived:
informed traders can use it at one trading session only. At time t − 1,
informed traders have a perfect and correct knowledge of informa-
tion δt . Their information contains no noise.5 All market participants
believe the information process to be as described in Equation (5),
and have homogeneous assessments of the parameters.

This type of process is relevant to this study. First, it includes previ-
ous models: assumptions made by Admati and Pfleiderer (1988) about
the information process, and by Kyle (1985) about the final asset pay-
off, corresponding to the case α0 = 1, α1 = 0, and β1 = 0. In these
models, the variance of information is constant. Second, a GARCH
process reflects quite well the fact that information tends to come in
waves. This assumption finds some empirical support: Engle et al.
(1990) emphasized the influence of the dynamics of the news pro-
cess on the volatility of exchange rates, and Lamoureux and Lastrapes
(1990) observed a daily time dependence in the rate of information
arrival to the market for individual stocks of the New York Stock Ex-
change. The assumption of a time-varying process for information is
also related to the justification of a subordinated process for specula-
tive prices, introduced by Clark (1973, p. 137): “The different evolution
of price series on different days is due to the fact that information is
available to traders at a varying rate. On days when no new informa-
tion is available, trading is slow, and the price process evolves slowly.

4 Foster and Viswanathan (1993a) made a similar assumption for the information process by taking
a process related to the exponential GARCH developed by Nelson (1990).

5 This assumption has also been made by Kyle (1985) and Foster and Viswanathan (1993b).
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On days when new information violates old expectations, trading is
brisk, and the price process evolves much faster.”

The varying rate of information arrival implies that the economic
time reflecting the real activity of agents differs from the calendar
time. As more information arrives, the economic time accelerates, the
market price moves, and trading increases. Clark used this positive
relation between trading volume and market volatility to take trading
volume as a proxy for the directing process of market prices. Although
there is no apparent causality between market volatility and trading
volume, Clark found empirically a positive correlation between the
two variables.

In this article the assumption of a time-varying economic time is
moved to the deep parameters of the model. This leads to a much
wider array of implications than were first explored in the litera-
ture: not only the time-varying behavior of market volatility and the
presence of thresholds, but also a volatility-liquidity relation and a
volatility-volume relation will be derived from this economic model
and thus will be given an economic significance.

2.2 Market participants
There are three types of market participants: liquidity traders, in-
formed traders, and a market maker. Liquidity traders have a demand
for the risky asset that is determined by exogenous reasons. For ex-
ample, they sell assets for their current consumption or buy assets
to invest their revenues and transfer wealth over time. The demand
from liquidity traders is represented by a normal random variable yt ,
which has a mean of zero and a variance φ2 assumed to be con-
stant over time.6 All liquidity traders are nondiscretionary: they trade
immediately and cannot act strategically.

Informed investors trade to benefit from their informational advan-
tage. As in Kyle (1985), insiders send market orders; they cannot make
their quantity conditional on price (limit orders are not allowed). Each
informed trader assumed to be risk-neutral submits an order xi

t , which
depends on his private information. His trading strategy is an optimal
response to the other market participants’ (other informed traders and
the market maker) strategies. An informed trader chooses the quantity
to trade given the market-maker pricing rule Pt and the expected de-
mand from other traders, such that he maximizes the expected value
of his trading profit. A trader informed just before time t trades at
time t and holds his position until the final time T . At time T , there
are no trades and investors receive dividends equal to VT paid by the

6 See Back (1993) for a model with a time-varying variance of liquidity trading.
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firm. The expected gain of an informed trader is only related to the
information that he received. The whole demand from nt informed
traders at time t is noted as xt .

The total demand wt is thus xt + yt . All orders to trade are brought
to a market maker who acts as an investor of last resort. She tries to
match one order with another and absorbs (buys or sells) the demand
wt . The market maker is assumed to be risk neutral and to make zero
expected profit under the pressure of competition. As in Kyle (1985),
all trading is done at an efficient price Pt set by the market maker. To
set the price Pt , the market maker uses all her information: the past
values of information and the past and current values of the order
flow. Prices are not posted, but rather are determined after informed
traders and liquidity traders have submitted their orders. The market
maker observes the imbalance wt but ignores the nature of the orders
(liquidity-driven or information-driven).

2.3 Equilibrium
Proposition 1. Assuming normality for the demand from liquidity
traders and for information,7 there is a unique linear Nash equilib-
rium. The price schedule and the quantity traded by each informed
trader are given by

Pt = Vt + λt wt and xi
t = τ i

t δt+1. (6)

The parameters λ and τ , defining the pricing rule of the market maker
and the strategies of the informed traders, are

λt = 1

nt + 1

√
ntσ

2
t+1

φ2
and τ i

t = τt =
√

φ2

ntσ
2
t+1
, (7)

where λ and τ depend on the expected variance of information.

Proof in Appendix B.
This result is quite similar to that of Admati and Pfleiderer (1988)

and Foster and Viswanathan (1993b). Differences arise from the time-
varying behavior of the variance of information σ 2

t only. Both in-
formed traders and the market maker take this into account by com-
puting their anticipations and forming their strategies. The parameter
λt , used by the market maker to set the clearing price, is the usual
inverse measure of the market depth or liquidity. It increases with the
ratio of expected variance of information to variance of liquidity trad-

7 Foster and Viswanathan (1993b) generalized this result by showing that the linear form of the
decision rules is maintained if the distribution belongs to the elliptically contoured class.
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ing σ 2
t /φ

2. Assuming a constant variance of liquidity trading, a high
ratio σ 2

t /φ
2 means a high variance of information, which means a

high probability for a big news item to appear in the future, and then
a high expected trading profit for the informed traders, and finally,
a high loss for the market maker due to informed trading (adverse
selection problem faced by the market maker). The market maker is
thus more sensitive to the order flow. She increases λt to balance
expected losses from the trades with informed traders and expected
gains from trades with liquidity traders.8 An increase in λt means
a less liquid market at time t . The parameter τt , defining informed
traders’ strategy, decreases with the expected variance of information
σ 2

t . Informed traders, whose demand is directly related to their private
information, tend to limit their impact on the price as the market is
expected to be less liquid.

3. Exogenous Acquisition of Information

In this section, informed traders are exogenously informed. Proposi-
tion 2 derives the equation for the expected variance of market price
changes. Propositions 2.1 and 2.2 deal with special cases.

The variable ht denotes the expected variance of the price change
(Pt −Pt−1) computed just before time t −1. To compute the expected
variance ht , the most recent public information known to all mar-
ket participants is used: δt−1. It is not possible to make the variance
conditional on the price change (Pt−1 − Pt−2), as is done in empiri-
cal studies using statistical GARCH models, because the variable Pt−1

is not known to investors before time t − 1. Also, it is the variance
of price changes that is studied here, although empirical studies use
logarithmic price changes or percentage returns, which are closely
related but not identical to price changes.

Proposition 2. Assuming a GARCH(1,1) process for information given
by σ 2

t = α0 + α1δ
2
t−1 + β1σ

2
t−1, the process for the expected variance of

market price changes is given by

ht ≡ Vart−1(Pt − Pt−1) = α∗0,t + α∗1,tδ2
t−1 + β∗1,t ht−1, (8)

where the coefficients α∗0,t , α
∗
1,t , and β∗1,t given in Appendix B vary

over time and depend on the number of informed traders at time t −

8 Unlike Kyle (1985), the market liquidity (inversely related to λt ) changes over time. Even if
liquidity is expected to be higher in the future (i.e., Et−1(λt+1) < λt ), informed traders cannot
spread their orders over several trading sessions to benefit from a better liquidity. As information
δt+1 is revealed to all market participants between time t and time t+1, it is profitable for informed
traders to trade on their private information at time t only. As information δt+1 is short lived, trades
after time t are done on public information and lead to zero expected profit.
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1 and time t, nt−1, and nt . The process of market price changes is
thus a GARCH process with time-varying parameters. The degree of
persistence of information in market variance α∗1,t is equal to

α∗1,t = α1

[
1

nt−1 + 1
+ nt

nt + 1
(α1 + β1)

]
. (9)

Proof in Appendix B.
The process of the variance is not completely identified until the

process followed by the number of informed traders is specified. Two
special cases, for which the conditional variance has a simple form,
are discussed below: the case of no informed traders and the case of
a constant, positive number of informed traders.

Proposition 3. No informed traders: nt = 0. The process of market
price changes is a GARCH process identical to the information process:

ht = α0 + α1δ
2
t−1 + β1ht−1 = α0 + α1(Pt−1 − Pt−2)

2 + β1ht−1. (10)

If there are no informed traders, the competitive risk-neutral market
maker sets the price equal to the expected value of the asset. The
market maker knows the true value of the asset with a lag of one
period. The market maker does not lose any more money because of
the presence of informed traders. The price change is equal to the new
piece of information, and thus the process of the conditional variance
of the price change is exactly equal to the process of the conditional
variance of the information. The degree of persistence of the latest
informational shock δt−1 is the same in variance of information σ 2

t
and in market variance ht ; it is equal to α1.

Proposition 4. A constant number of informed traders: nt = n. The
variance of market price changes follows a GARCH process, whose
degree of persistence depends on the number of informed traders:

ht = α0
1+ n(1+ α1)

1+ n
+ α1

1+ n(α1 + β1)

1+ n
δ2

t−1 + β1ht−1. (11)

With exogenous acquisition of information and a constant, positive,
number of informed traders, a GARCH process similar to that for infor-
mation is still obtained. However, the two processes do not have the
same coefficients; in particular, the degree of persistence of the lat-
est information into volatility is different. This difference arises from
the presence of informed traders. As shown by Equation (11), the
persistence decreases with the number of informed traders from α1

to α1(α1 + β1), values obtained for two extreme cases: no informed
traders and a number of informed traders growing toward infinity.
The more informed traders are, the less persistent the latest informa-
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tion into market variance. Thus, after a large informational shock, the
variance of market price changes is lower than the variance of infor-
mation and, conversely, after a small informational shock, the variance
of market price changes is higher than the variance of information.

Two points must be considered to explain the decreasing rela-
tion between the degree of persistence and the number of informed
traders: the quantity of private information incorporated in market
prices and the mean reversion in the conditional variance of infor-
mation. In this model of trading, a part of private information is in-
corporated in the market price before it becomes public. The more
informed traders are, the more information is transmitted through the
trading process and the more informative the prices.

The level of market volatility relative to the level of information
volatility is determined by the relative size of the variance of the two
pieces of information and by the importance of the two pieces in the
market price change. To quantify this statement let us consider the
following equation:

Vart−1(Pt − Pt−1) = 1

n + 1
Vart−1(δ

2
t )+

n

n + 1
Vart−1(δ

2
t+1). (12)

Equation (12) relates the variance of market price changes to the
variance of the different pieces of information incorporated in the
prices at time t−1 and time t . The price change (Pt−Pt−1) is partly due
to private information δt incorporated at time t−1 and partly to private
information δt+1 incorporated at time t . The relative importance of
the two pieces of information δt and δt+1 is measured by the two
weights 1/(n + 1) and n/(n + 1), respectively. With no informed
traders (n = 0), the price change (Pt − Pt−1) is equal to δt , and the
weights are equal to 1 and 0. With a constant number of informed
traders equal to n, both informational shocks influence the change in
price: n/(n + 1)% of δt is incorporated at time t − 1 and 1/(n + 1)%
of δt is incorporated at time t , and similarly, n/(n + 1)% of δt+1 is
incorporated at time t and 1/(n + 1)% of δt+1 is incorporated later at
time t + 1.

The second point relevant for the explanation is the mean rever-
sion in the conditional variance of information. Shocks to volatility
decay at the rate (α1 + β1) toward the unconditional variance level
σ 2. In a GARCH model, after a large shock (defined by the inequality:
δ2

t−1 ≥ σ 2), the variance of information is expected to be high next
period [Vart−1(δt ) ≥ σ 2], to remain high later on [Vart−1(δt+1) ≥ σ 2],
but then to come back (i.e., to decrease) to its long-term level σ 2

[Vart−1(δt ) ≥ Vart−1(δt+1)]. Similarly, after a small shock (defined by
the inequality: δ2

t−1 < σ 2), the variance of information is expected
to be low next period [Vart−1(δt ) < σ 2], to remain low later on
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[Vart−1(δt+1) < σ 2], but then to come back (i.e., to increase) to its
long-term level σ 2[Vart−1(δt ) < Vart−1(δt+1)].

The two points detailed above explain the decreasing relation be-
tween the degree of persistence and the number of informed traders.
According to Equation (12), after a large informational shock, the vari-
ance of market price changes ht is lower than the variance of infor-
mation σ 2

t since the latter tends to decrease; and after a small informa-
tional shock, the variance of market price changes ht is higher than
the variance of information σ 2

t since the latter tends to increase.
In the special cases studied in this section, GARCH processes are

still obtained. For a given number of informed traders, the degree of
persistence is the same for all shocks: large shocks are as persistent as
small shocks. In Figure 2, the NICs for the case of a constant number
of informed traders corresponding to n = 0, 1, 3, and 20 are drawn.
An ARCH(1) process is used and defined as follows: σ 2

t = 0.5+0.5δ2
t−1,

which corresponds to α0 = 0.5, α1 = 0.5, and β1 = 0, and implies
an unconditional variance σ 2 = 1. The NICs associated with these
processes have different slopes but are still straight lines. A change
in the number of informed traders n leads to a rotation of the NIC
around the fixed point (σ 2, σ 2). In Figure 3, the decreasing relation be-
tween the degree of persistence and the number of informed traders is
represented. Although there is no threshold effect in a model with ex-
ogenous acquisition of information, we can guess from Figure 3 how
such an effect can appear in a more sophisticated framework with an
endogenous, time-varying number of informed traders: if there were
few informed traders after a small informational shock, then the de-
gree of persistence would be high (upper part of the graph), and if
there were many informed traders after a large informational shock,
then the degree of persistence would be low (lower part of the graph).
In the next section, it will be shown that there is indeed an increas-
ing relation between the number of informed traders and the size of
the past informational shock when the acquisition of information is
endogenous. In that case, a threshold effect appears—the degree of
persistence depends on the size of the shock: large shocks are less
persistent than small shocks.

4. Endogenous Acquisition of Information

In this section, the number of informed traders is endogenous. At time
t −1 and time t , the acquisition of pieces of information δt and δt+1 is
costly. The cost is assumed to be constant and is denoted by c. As in
Admati and Pfleiderer (1988), a trader decides to acquire private infor-
mation if the expected trading profit exceeds the cost of acquisition.
At equilibrium, under the pressure of competition, an informed trader
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Figure 2
News impact curves (exogenous acquisition of information)
This figure represents the NIC linking the past squared informational shock to the expected
variance of market price changes, obtained from a theoretical model of asymmetric information
with a constant number of traders exogenously informed. Various numbers of informed traders
are considered. The NICs are straight lines with a slope (equal to the degree of persistence) that is
constant for a given number of informed traders in the market. The choice of the deep parameters
of the model (α0, α1, β1, φ) is (0.5, 0.5, 0, 5).

expects to make zero net profit: the gains from his trading activity
are balanced by the cost of information. The equilibrium number of
informed traders at time t − 1 is given by

nt−1 = argmax
{
n; πt−1

n
> c

}
, (13)

where πt−1 is the expected trading profit made by informed traders
as a group. At time t − 1, this number is known and deterministic.
A similar equation gives the number of informed traders at time t ,
nt . From the time t − 1, this number is not known but the market
participants can compute its expected value.

As the market maker is making zero profit on average, the gains of
informed traders are equal to the losses suffered by liquidity traders
equal to λt−1φ

2. Using Equation (7), the trading profit of the group
of informed traders is equal to φσt

√
nt−1/(nt−1 + 1), product of the

liquidity-trading standard deviation φ multiplied by the expected stan-
dard deviation of information σt and by a function of the number of
informed traders in the market. The expected trading profit of in-
formed traders is positively linked to liquidity-trading volatility (the
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Figure 3
Degree of persistence (exogenous acquisition of information)
This figure represents the decreasing relation between the degree of persistence of the past
squared informational shock in expected market variance and the number of informed traders.
Each point corresponds to a model with a constant number of informed traders. The choice of
the deep parameters of the model (α0, α1, β1, φ) is (0.5, 0.5, 0, 5).

higher the activity of liquidity traders, the easier for informed traders
to hide their activity from the market maker), positively related to the
expected volatility of information (the higher the volatility of informa-
tion, the bigger the probability of getting a large piece of information),
and negatively linked to the number of informed traders (competition
among informed traders). After rearrangement, nt−1 is characterized
as the greatest integer that satisfies the following inequality:

nt−1(nt−1 + 1)2 <
φ2σ 2

t

c2
. (14)

A similar inequality characterizes the random number of informed
traders at time t , nt .

The values of the number of informed traders cannot be easily
computed from this inequality. Moreover, the computation of the vari-
ance of market price changes is complicated by the conditionality of
these numbers. These problems cannot be solved analytically. How-
ever, qualitative results, which explain the threshold effect in market
volatility, can be derived. Numerical results complete the qualitative
propositions.

1. The greater the latest shock of information, the greater the ex-
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pected variance of information. This follows directly from the assump-
tion about information volatility, which is modeled as a GARCH pro-
cess.

2. The greater the expected variance of information, the greater
the number of informed traders. The intuition behind this result is
that the probability of obtaining important information in the future
is high if the expected variance of information is high. If a big news
item is expected, the trading profit of the group of informed traders is
expected to be large, and many traders will be willing to acquire this
information. At equilibrium, the number of informed traders increases
so that the trading profit per informed trader is equal to the cost of
acquiring private information.

3. The greater the number of informed traders, the lower the persis-
tence of the latest informational shock in market volatility. In Section 3,
it was shown that the degree of persistence depends on the number
of informed traders. When the number of informed traders is low, the
degree of persistence is high; and conversely, when the number of
informed traders is high, the degree of persistence is low. However,
the equations leading to these results were derived with exogenous
acquisition of information, and are now invalid since the number of
informed traders is endogenously determined and depends especially
on past information via its expected variance. Even when the number
of informed traders at time t − 1 is known, the number of informed
traders at time t is not known because it is a random variable whose
realization depends on the value of δt+1. Further results are obtained
by numerical computations (see Appendix B for details). For particu-
lar values of information δt−1, the equilibrium value of the number of
informed traders at time t − 1 and the expected number of informed
traders at time t are computed numerically. These two functions are
represented in Figure 4. As previously noted, both functions are in-
creasing with the size of information δt−1. After a small informational
shock, there are few informed traders at time t−1 and few traders are
expected to be informed later on. However, more informed traders
are expected at time t than at time t−1 because the variance of infor-
mation is expected to go back (i.e., to increase) to its long-term level.
After a large informational shock, there are many informed traders at
time t − 1 and many traders are expected to be informed later on.
However, fewer informed traders are expected at time t than at time
t −1 because the variance of information is expected to go back (i.e.,
to decrease) to its long-term level. In other words, the number of
informed traders is persistent over time and mean reverts toward its
long-term level. This is because the number of informed traders at
time t − 1 is a function of the size of the past informational shock,
which shows both persistence and mean reversion. The discontinuity
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Figure 5
News impact curves (endogenous acquisition of information)
This figure represents the NIC (solid line) linking the past squared informational shock to expected
volatility of market price changes obtained from a model of asymmetric information whose traders’
decision to become informed is endogenous in the model. The degree of persistence (graphically
represented by the slope of the NIC) is a function of the past squared informational shock: large
shocks are less persistent than small shocks. The dashed line corresponds to the NIC with an
unconditional degree of persistence.

Proposition 5. Suppose a GARCH(1,1) process for information given
by σ 2

t = α0+α1δ
2
t−1+β1σ

2
t−1. With endogenous acquisition of informa-

tion, holding information prior to t − 2 constant at its unconditional
level, there exists a sequence of thresholds 11,12, . . ., such that

if 0 ≤ |δt−1| < 11, then nt−1 = N , α∗1,t ≈ α∗1(N ) and ht ≈ α∗0(N )+
α∗1(N )δ

2
t−1,

if 11 ≤ |δt−1| < 12, then nt−1 = N + 1, α∗1,t ≈ α∗1(N + 1) and
ht ≈ α∗0(N + 1)+ α∗1(N + 1)δ2

t−1,
if : ≤ : < :, then : , : and : ;

hence, the number of informed traders at time t − 1 is an increasing
step function of information; the degree of persistence is a decreasing,
discontinuous function of information approximately equal to a con-
stant [denoted α∗1(N + i)] on the interval [1i,1i+1[, and the expected
variance of the future market price change, given past information, is
a discontinuous function of information, approximately linear on the
interval [1i,1i+1[, where the discontinuities occur at the thresholds
1i, i = 1, 2, . . . .

856



Threshold Effect in Expected Volatility

Figure 6
Degree of persistence (endogenous acquisition of information)
This figure shows that the degree of persistence in volatility of market price changes is a decreasing
function of the past squared informational shock. The degree of persistence α1 of a GARCH model
described by Equation (1) would capture the unconditional level of persistence over time E (α∗1,t ).
A TARCH model, as described in Footnote 3, with several thresholds equal to those given by the
theoretical model 11,12, . . . would capture the entire dynamics of persistence.

In Figure 6, the choice of the parameters (α0, α1, β1, φ, c) implies
that there is always at least one informed trader (since

√
φ2(α0 + β1σ 2)

> c). The first threshold 11 is equal to
√
(4c2/φ2 − α0 − β1σ 2)/α1,

the second threshold 12 is
√
(18c2/φ2 − α0 − β1σ 2)/α1, and the kth

threshold 1k is
√
(k(k + 1)2c2/φ2 − α0 − β1σ 2)/α1. If the variance of

liquidity trading was higher, the cost of acquiring information lower,
or the variance of information higher, then the minimum number of
informed traders in the market at any time could be greater than one.

Figure 6 gives an economic insight into the empirical results ob-
tained with statistical GARCH and TARCH models. In a GARCH model,
the persistence in expected market variance is modeled by one pa-
rameter only: α1. It corresponds to the unconditional value of the
random, time-varying persistence α∗1,t given by the theoretical model.
In the TARCH model proposed in Section 1, the persistence is cap-
tured by two parameters: α1 for small shocks and the sum (α1 + γ1)
for large shocks in Equation (3). Small and large shocks are separated
by a threshold set by the econometrician at σ 2. Using the theoretical
model, the coefficient α1 corresponds to the value of the degree of
persistence conditional on a small shock E (α∗1,t |δ2

t−1 < σ 2), and the
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sum (α1 + γ1) corresponds to the value of the degree of persistence
conditional on a large shock E (α∗1,t |δ2

t−1 ≥ σ 2). According to the theo-
retical model, the sum (α1+γ1) is less than α1 and thus γ1 is negative,
as found empirically. Note that a TARCH model, as described in Foot-
note 3, with several thresholds equal to those given by the theoretical
model 11,12, . . . would capture at best the dynamics of persistence.
This work has some theoretical and empirical implications for further
research in the modeling of market volatility: although this gives some
economic content to the models with several thresholds (by relating
the value of these thresholds to the deep parameters of the model:
variance of information, variance of liquidity trading, and cost of ac-
quiring information), it shows that the persistence may be modeled
in a simple way, in terms of the number of parameters to estimate, by
using a parametric, decreasing function for the function F in Equa-
tion (1).

5. Further Testable Implications of the Model

In this section, further implications of the model are derived: the mag-
nitude of the persistence in expected market variance is linked to the
firm size; cross-restrictions between trading volume, market liquidity,
and market volatility are also offered to test the model further. Fi-
nally, the research design for a more complete test, using the method
of simulated moments, is outlined.

5.1 Persistence and firm size
In the financial industry, firms are followed by investment analysts
whose number varies from firm to firm. As argued in Brennan, Je-
gadeesh, and Swaminathan (1993), if the number of analysts can be
regarded as a proxy for the number of informed traders, then the
speed of adjustment of the firm’s stock price to new information is
related to the firm size. As is now shown, the degree of persistence in
expected market variance is indeed inversely related to the speed at
which new information is incorporated in the market price: the lower
the degree of persistence, the higher the speed of adjustment. Let us
consider first the case of exogenous acquisition of information. With
no informed traders, the piece of information δt−1 is incorporated
in the market price at time t and its persistence in expected market
variance is equal to α1. If there are informed traders, a part of δt−1

is incorporated in the market price earlier at time t − 1, and, from
Equation (11), its persistence in expected market variance is lower
than α1. With endogenous acquisition of information, the number of
informed traders varies over time as information is available at a vary-
ing rate. As in the exogenous case, when the unconditional number
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of informed traders is high, the unconditional degree of persistence
in expected market variance is low. Such a result motivates a cross-
sectional study that involves estimating a GARCH model for stocks
issued by firms of different sizes: assuming the same characteristics
for the information process for small and large firms, the uncondi-
tional degree of persistence α1, estimated by a GARCH model, should
be higher for small firms than for large firms. A study by Conrad, Gul-
tekin, and Kaul (1991) confirms this implication of the model: using
firms traded on the American and New York Stock Exchanges for the
period 1962 to 1988, they estimated univariate GARCH processes for
portfolios grouping firms of different sizes; they found a degree of
persistence equal to 0.190 for the 100 smallest firms, 0.159 for the 100
intermediate firms, and 0.114 for the 100 largest firms.

5.2 The volatility-volume relation
Trading volume is defined in the same way as by Admati and Pflei-
derer (1988). Specifically, expected trading volume in each period is
computed as half of the orders from the informed traders, plus half of
the orders from liquidity traders, plus half of the orders traded with
the market maker (noncrossed orders): 1

2φ(1+
√

nt−1 +√1+ nt−1).
As for the process of the variance, the process of trading volume

is not completely identified until the process followed by the number
of informed traders is specified. When there are no informed traders,
the market maker absorbs the demand from liquidity traders only, and
the volume is then equal to φ. When the number of informed traders
is constant over time, expected trading volume is also constant, al-
though the variance of information changes. This is due to the fact
that informed traders modify the intensity with which they trade on
the basis of their private information to limit their impact on market
liquidity (an informed trader’s order is proportional to δt/σt ). There
is a positive relation between the number of informed traders and
expected trading volume: the higher the number of informed traders,
the more aggressive informed traders trade as a group (competition
among themselves), and the higher the expected trading volume. In a
model with endogenous acquisition of information, expected trading
volume is positively linked to the value of the past squared informa-
tional shock via the number of informed traders: the larger the past
informational shock, the higher the expected variance of information,
the higher the number of informed traders at equilibrium (see Sec-
tion 4), and the higher the expected trading volume.

A positive relation is also obtained between expected trading vol-
ume and expected market variance: both quantities are positively re-
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lated to the information flow rate.9 This relation is represented in
Figure 7 and constitutes a testable implication to confront the model
further with real data. It seems to be corroborated by the analysis of
the volatility-volume relation by Gallant, Rossi, and Tauchen (1992).
Using the S&P composite price index from 1928 to 1987 they found
a positive relation between trading volume and market variance. Fig-
ure 7 also shows that the volatility-volume relation is concave. For
very high levels of market volatility (during periods of market booms
and crashes associated with big changes in the information environ-
ment), the relation is almost flat as the marginal impact of an in-
crease in the number of informed traders on their total demand be-
comes smaller. This additional fact seems consistent with the study by
Balduzzi, Kallal, and Longin (1996) on the breakdown of the price-
volume relation. Using data for an NYSE stocks index for the period
1885 to 1990, they found a strong positive correlation (0.52) between
middle-size returns and trading volume, and no significant correlation
(0.06) between crashes (defined as negative returns under a threshold
of four standard deviations) and trading volume.

In this model, expected market variance is positively related to
expected trading volume. This correlation is not causal since the be-
havior of both variables is explained (caused) by another variable:
the information flow rate. The model, however, justifies Clark’s idea
of taking the trading volume as a measure of the economic time.

5.3 The volatility-liquidity relation
In this model the concept of market liquidity is associated with market
depth, measured by the inverse of Kyle’s (1985) parameter λ given
in Equation (7). In the model this parameter depends on the num-
ber of informed traders and on the ratio of expected variance of in-
formation to expected variance of liquidity trading. With exogenous
acquisition of information, assuming the variance of liquidity trading
is constant, after a large informational shock, information volatility
increases (ARCH effect), the ratio of the amount of private informa-
tion to the amount of liquidity trading increases, the market maker
expects the trading profit made by the group of informed traders to
increase, and then decreases the liquidity she offers by increasing the
parameter λ. With endogenous acquisition of information, two effects
work in opposite directions for the relation between market liquidity

9 This characterization of the volatility-volume relation adds to Foster and Viswanathan’s (1993a)
work. With a similar framework they found that innovations in trading volume and market variance
are positively correlated. Here, a positive relation is found between the expectation of the two
variables (conditional trading volume and conditional market variance).
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Figure 7
Trading volume, liquidity, and market variance (endogenous acquisition of information)
This figure relates the expected market variance to two market microstructure variables: trading
volume and market liquidity. The three variables are linked through the number of informed
traders at equilibrium.

and the size of information: first, as with exogenous acquisition of
information, market liquidity decreases with the size of information
via the expected volatility of information, and second, market liquid-
ity increases with the size of information via the number of informed
traders which increases due to competition. Numerical results show
that the first effect prevails: market liquidity decreases with the size
of the past informational shock.

A positive relation is also obtained between expected market liq-
uidity and expected market variance: both quantities are positively
related to the information flow rate. In Figure 7 the relation between
expected market variance and market liquidity is also represented.
Such a relation constitutes another testable implication. Empirical re-
sults by Handa (1991) tend to support this proposition. Handa (1991)
built a practical, observable measure of market liquidity by computing
the market depth from the market-maker’s quotes. Using transaction
data for NYSE and AMEX stocks over the period 1988 to 1989, he
found that market liquidity (measured by the market depth) is in-
versely related to the absolute size of the latest change in the bid-ask
midpoint (taken as the fundamental asset value), and therefore to
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market variance (as the bid-ask midpoint presents ARCH-like charac-
teristics).

5.4 A more complete test of the model
In this model (as in models using Kyle’s paradigm) the information
process and the price process are distinguished. The information pro-
cess is first specified, and the price process is then derived as a solution
of an economic model. It makes sense to work with information flows
since information constitutes the real news of financial markets.

Following the works by Foster and Viswanathan (1993a) and Bern-
hardt and Hughson (1995), one can work directly with information
flows and to estimate the deep parameters of the model. The deep
parameters of the model (coefficients of the variance of information
α0, α1, and β1, liquidity trading variance φ2, and cost of acquiring
private information c) could be directly inferred from observed data
using the procedure of the method of simulated moments.10

The results obtained here suggest that market prices, trading vol-
ume, and market liquidity should be used for the observable variables
because they are influenced by information flows. Market prices al-
low one mainly to test the hypothesis about the information variance
process; trading volume tests the hypothesis about informed traders’
demand; and market liquidity tests the hypothesis about the market-
maker’s behavior. As the model is a transactional level, high-frequency
data should be used for the test. The model also suggests the use of
serial and cross moments. The choice of serial moments is motivated
by the persistence in the variables. Although information is short lived,
the variance of information persists over time, and this induces a per-
sistence in all derived variables: number of informed traders, expected
market variance, expected trading volume, and market liquidity. Such
a serial correlation may be intensified if information is long lived (i.e.,
if private information is not revealed to the public in the next period
and can be used for several further trading sessions by the informed
traders). Trading on long-lived information, considered in Kyle (1985)
and Cho (1995), may add another source of serial correlation in price
volatility.

The choice of cross-moments between market variance, trading
volume, and market liquidity is motivated by the correlation found
between these three variables in Sections 5.2 and 5.3.

10 Two other approaches have been proposed in the literature to test market microstructure models:
Cho (1995) applies Kalman filtering to identify the deep parameters of a model with long-lived
information but only one informed trader; and Easley, Kiefer, and O’Hara (1993) estimate the
structural parameters defined as probabilities (the probability of an information event, of good
news, and of the presence of an informed trader) by maximizing the likelihood of the model.
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6. Conclusion

In this research a GARCH effect is included in the information process
and, in equilibrium, manifests itself in the price process, but with dif-
ferent characteristics. For example, it is shown that with asymmetric
information, the GARCH process for information is transformed into a
TARCH process for market price changes. Although market variance
is often used as a measure of information flows [as argued by Ross
(1989) for a world without arbitrage opportunities], this article shows
that market participants’ trading activity may add characteristics in
the observed price process that are not contained in the information
process. Using a model of information also allows one to investigate
other properties of financial markets, such as trading volume and mar-
ket liquidity, that are related to information flows. Such an approach
provides a wide array of testable propositions that could enhance our
understanding of how financial markets work.

Appendix A: Estimation of GARCH and TARCH Models

To illustrate the threshold effect in expected market variance, GARCH
and TARCH models for changes in the Standard & Poor’s 500 index
futures prices. The period of estimation is 1986 to 1990 and con-
tains 17,680 observations. A detailed description of the dataset can
be found in Becker, Finnerty, and Friedman (1993). Following Foster
and Viswanathan (1993a), the observed price change is first whitened
for different effects: nontrading periods such as overnight, weekends,
and holidays, opening and closing time periods, and seasonal patterns
both in the mean and variance of the price change. Standardized price
changes are then used to estimate GARCH and TARCH equations.

A.1 Equation for the expected variance (GARCH):

ht = 4.07 · 10−2 + 0.089e2
t−1 + 0.878ht−1,

(27.44) (56.51) (671.62)
log likelihood = −20, 964.75.

A.2 Equation for the expected variance (TARCH):

ht = 4.91 · 10−2 + 0.128e2
t−1 − 0.091D1,t−1(e2

t−1 − σ 2)+ 0.866ht−1,

(19.68) (33.61) (−10.57) (591.77)
log likelihood = −20, 880.19.

The threshold is defined as the unconditional variance denoted by σ 2

and is equal to 1.174.
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Appendix B: Proofs and Details of Numerical Computations

B.1 Proof of Proposition 1
The Nash equilibrium in the game between the market maker and
informed traders is solved. Following Kyle (1985), normality for the
demand from liquidity traders yt and for information δt+1 is assumed.
Under this assumption, the price set by the market maker Pt is linear
in the order flow observed at time t , wt , and the quantity traded by
each informed investor, xi

t , is linear in their private information δt+1.

B.1.1 Demand of informed traders. The ith informed trader
chooses xi

t equal to τ i
t δt+1. He chooses xi

t , the amount to trade at
time t , to maximize his expected trading profits. The informed trader
uses all his information to compute the expectation. He maximizes as
follows:

E
(
xi

t (VT − Pt )|w1,w2, . . . ,wt−2,wt−1, σ1, δ1, δ2, . . . , δt , δt+1
)
. (B1)

VT is the random terminal liquidation value of the asset. Pt is the
asset price set at time t by the market maker. Pt is a random variable
for informed traders, because they do not know the demand from
liquidity traders at time t , yt , and thus neither do they know the total
demand at time t , wt (= xt + yt ). Given the linear pricing rule of
the market maker and the conjecture made by the ith informed trader
about the other nt−1 informed traders’ market order, τt can be written

τt = 1

λt (nt + 1)
. (B2)

B.1.2 Pricing rule of the market maker. Under the assumption of
normality of the liquidity traders’ demand and information, the market
maker uses a linear pricing rule characterized by the parameter λt . The
value of λt is determined for a given set of strategies by all informed
traders. The condition of zero expected profit for the market maker
is used.

E ((VT − Pt )wt |w1,w2, . . . ,wt−2,wt−1, σ1, δ1, δ2, . . . , δt−1, δt ) = 0.
(B3)

Equation (B3), δt contains some information about δt+1 since the vari-
ance of the next piece of information depends on past information.
By computing her expectations, the market maker takes into account
this information. The following equation for λt is obtained

λt = Covt (δt+1,wt )

Vart (wt )
= ntτt Vart (δt+1)

n2
t τ

2
t Vart (δt+1)+ φ2

. (B4)
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The covariance and variance are conditional on the information of
the market maker. The only relevant piece of information is the latest
news δt , which is known to the public between time t − 1 and time
t . The expected variance of future information δt+1 is conditioned
on the value of the latest piece of information δt . This expectation is
denoted by σ 2

t+1. Parameter λt can be written

λt =
ntτtσ

2
t+1

n2
t τ

2
t σ

2
t+1 + φ2

. (B5)

The system given by Equations (B2) and (B5) is now used to obtain
the values of τt and λt , given in the text (Equation 7).

B.2 Proof of Proposition 2
The expected variance of the price change over the period [t − 1, t ],
that is to say (Pt−Pt−1), is computed. The expectation of the variance
is computed just before time t−1. The expected variance of the price
change (Pt − Pt−1) is called ht and defined as

ht ≡ Var ((Pt − Pt−1)|σ1, δ1, δ2, . . . , δt−2, δt−1) . (B6)

The computation of ht is detailed below. The price change is first
decomposed:

Pt − Pt−1 = δt + λt wt − λt−1wt−1, (B7)

where the demand purchased by the market maker wt is given by

λt wt = λt (yt + ntτtδt+1)

= 1

nt + 1

√
ntσ

2
t+1

φ2
yt + nt

nt + 1
δt+1. (B8)

The price change is

Pt − Pt−1 = δt

nt−1+1
+ntδt+1

nt+1
+ 1

nt + 1

√
nt s2

t+1

φ2
yt

− 1

nt−1 + 1

√
nt−1σ

2
t

φ2
yt−1. (B9)

Now, the expectation of the square of the above equation, conditional
on the knowledge of δt−1, is taken. The independence of the liquidity
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trading yt from the pieces of information is used to obtain

ht = σ 2
t

(nt−1 + 1)
+ E

[(
nt

nt + 1

)2

δ2
t+1|δt−1

]

+ E

[
nt

(nt + 1)2
σ 2

t+1|δt−1

]
. (B10)

As the number of informed traders is exogenously given, Equation
(B10) can be written

ht = s2
t

(nt−1 + 1)
+
(

nt

nt + 1

)2

E (δ2
t+1|δt−1)

+ nt

(nt + 1)2
E (σ 2

t+1|δt−1). (B11)

Two conditional expectations have to be computed; using the defini-
tion of the information process given by Equation (5), the two expec-
tation terms are given by

E (σ 2
t+1|δt−1) = E (α0 + α1δ

2
t + β1σ

2
t |δt−1) = α0 + (α1 + β1)σ

2
t , (B12)

E (δ2
t+1|δt−1) = E (E (δ2

t+1|δt )|δt−1)

= E (σ 2
t+1|δt−1) = α0 + (α1 + β1)σ

2
t . (B13)

By replacing these two expressions in the equation for ht , one gets

ht = α0
nt

nt + 1
+
(

1

nt−1 + 1
+ nt

nt + 1
(α1 + β1)

)
σ 2

t . (B14)

The expression for σ 2
t and the above relation at time t − 1 are now

used to obtain the equation for the process of the conditional variance
[Equation (8) in the text]:

ht ≡ Vart−1(Pt − Pt−1) = α∗0,t + α∗1,tδ2
t−1 + β∗1,t ht−1, (B15)

where

α∗0,t = α0

(
A0,t+A1,t−β1A0,t

A1,t

A1,t−1

)
,

α∗1,t = a1A1,t , and β∗1,t=β1
A1,t

A1,t−1
. (B16)
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With

A0,t = nt

nt + 1
and A1,t = 1

nt−1 + 1
+ nt

nt + 1
(α1 + β1). (B17)

B.3 Details of numerical computations
The details of the numerical computation of the expected variance of
market price changes with endogenous acquisition of information are
given below.

Equations (B1–B10) are still valid; but when the acquisition of in-
formation is endogenous, the number of informed traders is a random
variable and Equations (B11–B17) are no longer valid. Equation (B10)
is used to compute the expected volatility ht . Expectations do not
have simple analytic expressions because the variables nt−1 and nt

are derived from an inequality. The value of ht is numerically com-
puted by Monte Carlo simulations for a specific process of information
and for specific parameters of the model (variance of liquidity traders’
demand and cost of information) and for particular values of δt−1.
For simulations and graphical representations, an ARCH(1) process is
used and defined as follows: σ 2

t = 0.5 + 0.5δ2
t−1, which corresponds

to α0 = 0.5, α1 = 0.5, and β1 = 0. Information δt is drawn from a
normal distribution with mean zero and variance σ 2

t . The simulations
use 20,000 random draws. The unconditional variance is equal to one.
To compute the number of informed traders at each date using Equa-
tion (13), the ratio of the cost of information to the variance of liquidity
traders’ demand (c2/φ2) is taken as equal to 1/25. It corresponds to
an average number of informed traders equal to 1.50. Figures 4–7 re-
flect the choice of the parameters (α0, α1, β1, φ, c) equal to (0.5, 0.5,
0, 5, 1).
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